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Abstract

In this paper, we develop and analyze four algorithms for feature selestion in the
eontext of rough set methodology. The initial state and the feasibility eriterion of all
these algorithms are the same. That is, they start with a given feature set and pro-
gressively remove features, while ¢ontrolling the amount of degradation in elassifisation
quality. These algorithms, however, differ in the heuristies used for pruning the seareh
spaee of features. Our experimental results ¢onfirm the expested relationship between
the time ¢omplexity of these algorithms and the elassifieation ageuraey of the resulting
upper elassifiers. Our experiments demonstrate that a #-reduet of given feature set «an
be found effisiently. Although we have adopted upper classifiers in our investigations,
the algorithms presented san however be used with any method of deriving a elassifier
where the quality of elassifisation is a monotonieally deereasing funetion of the size of
the feature set.

We e¢ompare the performanee of upper elassifiers with those of lower elassifiers.
We find that upper elassifiers perform better than lower elassifiers for duodenal ulser
data set. This should be generally true when there is a small number of elements
in the boundary region. An upper elassifier has some important features that make
it suitable for data mining applieations. In partieular, we have shown that the up-
per e¢lassifiers ean be summarized at a desired level of abstrastion by using extended
deeision tables. We also point out that an upper elassifier results in an ineonsistent
deeision algorithm, whieh ean be interpreted deterministieally or non-deterministieally
to obtain a eonsistent deeision algorithm.
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1 Introduction

A data-mining process involves extracting valid, previously unknown, potentially useful,
and comprehensible patterns from large databases. As described in Fayyad (1996) and
Simoudis (1996), this process is typically made up of selection and sampling, preprocessing
and cleaning, transformation and reduction, data mining, and evaluation steps. The first step
in data-mining process is to select a target data set from a database (or a data warehouse) and
to possibly sample the target data. The preprocessing and data cleaning step handles noise
and unknown values as well as accounting for missing data fields, time sequence information,
and so forth. The data reduction and transformation step involves finding relevant features
depending on the goal of the task and certain transformations on the data such as converting
one type of data to another (e.g., changing nominal values into numeric ones, discretizing
continuous values), and/or defining new attributes. In the mining step, the user may apply
one or more knowledge discovery techniques on the transformed data to extract valuable
patterns. Finally, the evaluation step involves interpreting the result (or discovered pattern)
with respect to the goal/task at hand. Note that the data-mining process is not linear and
involves a variety of feedback loops, because any one step can result in changes in preceding
or succeeding steps. Furthermore, the nature of a large, real-world data set, which may
contain noisy, incomplete, dynamic, redundant, spare, and missing values, certainly requires
that existing techniques and approaches be extended to cope with such problems (Deogun
et al., 1996; Matheus, Chan & Piatetsky-Shapiro, 1993). This paper uses rough set model
to address issues related to some aspects of real-world data and investigates the interactions
between feature selection algorithms and rough classifiers.

The potential for using rough set methodology for investigating problems relating to very
large and dynamic data in real-world databases is very strong and therefore it represents a
novel area for research in data mining. The rough set theory provides a formal framework
for knowledge discovery (Lin, 1996; Pawlak, 1981; Pawlak, 1991; Pawlak et al., 1995). It has
several attractive features such as deriving rules only from facts present in data and finding
a simpler representation of knowledge in the form of decision table (or rules). In this paper
we consider classification methods only in algebraic approximation spaces, which do not
require any preliminary or additional information about data. We use upper classifiers and
extended decision tables to address special problems of noisy and dynamic data. Approaches
for vertical and horizontal reduction of a data set are needed in the process of dealing with
very large data sets. Hence, in this paper we develop and evaluate feature selection strategies
for the vertical reduction of a data set.

Feature selection is the problem of choosing a small subset of features that is necessary
and sufficient to describe target concept(s). The importance of feature selection in a broader
sense is due to the potential for speeding up the processes of both concept learning and classi-
fying objects, reducing the cost of classification (e.g., eliminating redundant tests in medical
diagnosis), and improving the quality of classification (Kira & Rendell, 1992). It is well
known that searching for the smallest subset of features in the feature space takes time that
is bounded by O(2'J), where: [ is the number of features, and J is the computational effort
required to evaluate each subset. This type of exhaustive search would be appropriate only



if [ is small and J is computationally inexpensive. Greedy approaches like Sequential back-
ward /forward techniques (James, 1985; Modrzejewski, 1993), and dynamic programming
(Chang, 1973) are some of the efficient search techniques applied with some feature selection
criterion. For near-optimal solutions or optimal solutions in special cases, weights of either
individual features or combinations of features are computed with respect to some feature
selection criteria (or measures) such as Bhattacharya coefficient, divergence, Kolmogorov
variational distance, etc., in statistics (Devijver & Kittler, 1982; Miller, 1990); entropy or
classification accuracy in pattern recognition and machine learning (Pal & Chakraborty,
1986; Duda & Hart, 1973; Fayyad & Irani, 1992); classification quality based on variations
of MZ metric in information retrieval systems (Bollmann & Cherniavsky, 1981). In such
procedures, irrelevant features are either eliminated or assigned small coefficients.

We have proposed in Deogun et al. (1995), ways to improve upper classifiers — one of
the classification methods in rough set theory. The enhancement is achieved by a sequential
backward feature selection algorithm to preprocess a given set of features. This is important
because rough classification methods are incapable of removing superfluous features. We
also proved that the sequential backward selection algorithm finds a small subset of relevant
features that are ideally sufficient and necessary to define target concepts with respect to
a given threshold. This threshold value indicates acceptable degradation of classification
quality. We propose mechanism for making upper classifier adaptive. This is accomplished
by associating some kind of frequency information with each tuple of a decision table. The
frequency information associated with each tuple is called incremental information. The
notion of decision table is also extended to represent an adaptive upper classifier. It is also
used for interpreting the upper classifier either deterministically or nondeterministically. In
Sever (1995), findings on only one heuristic, namely stepwise backward feature selection, was
reported. We then proposed four heuristics and completed the experimental studies using
various machine learning data sets. Preliminary results on these findings were reported in
Choubey et al. (1996). There are two important goals that we intend to accomplish in this

paper.

e First, we perform extensive experimental studies with a real life data set using a family
of stepwise backward selection algorithms for upper classifiers.

e Second, we compare the performance of upper classifiers to that of lower classifiers on
a real data set. The data set that we used have been used by Pawlak et al. (1986) for
lower classifiers.

Rest of the paper is organized as follows: In Section 2, we present a brief discussion of
classification methods in the context of rough set theory. In this section, we also develop the
notion of accuracy of classification that can be used for upper or lower classification methods
and formally define the feature selection problem. A formal discussion of upper classifiers is
presented in Section 3. In Section 4, we develop four feature selection heuristics and discuss
the family of stepwise backward selection algorithms, in detail, and analyze the worst case
time complexity for all algorithms presented. This section is divided into four subsections,
one for each of the four heuristics. In Section 5, experimental setup and results are discussed.
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This section is divided into two subsections. In the first subsection, we discuss details of the
experiments and results of using family of stepwise backward selection on learning data sets
and duodenal ulcer data set. The second subsection includes the experimental setup and
results of comparison of lower classifiers and upper classifiers on duodenal ulcer data set. A
discussion on extended decision tables is presented in Section 6 and concluding remarks are
presented in Section 7.

2 Classification Methods in Rough Set Theory

A decision table is defined as a quadruple S = (U, @, V, p) where: U is the finite set of objects;
(@ is the union of condition, denoted by CON, and decision attributes, denoted by DEC
(i.e., @ = CON UDEC); V is the union of domains of attributes in @Q; and p: U x Q =V
is a total description function. For all z € U and a € @, let py(a) = p(x,a). Let P C ) and
P={P,P,,...,P,}. Let us introduce following notations.

(i) A P-tuple, p, (P), is a mapping from P to Vp, union of domains of attributes in P,
ie., Py P — Vp.

(ii) The equivalence relation on U defined by values of P is denoted
P ={(z,y): =,y €UA p, (P)=p, (P)}.

(iii) An equivalence class is denoted
[z ={y : Pz (P) =P, (P)}.

(iv) The set of all equivalence classes is denoted
UP = {[z]z: z e U}.

Let X = [r];55; be a concept of interest in S. A decision algorithm, denoted by Dg(X),
is induced from S such that, for a given object y, it yields one of these three answers: a)
y is in X, b) y is not in X, ¢) unknown. Using anology with these answers, we say that
the approximation of X in S yields a partition of U into three groups. Now, we define the
groups of X in S corresponding to each answer. Let POSgs(X) be the set of objects that is
considered by the decision algorithm Dg(X) to belong to the concept X. Let BNDg(X) be
the set of objects for which Dg(X) gives the answer of unknown. Finally, let NEGg(X) be
the set of objects that are not regarded as members of X by Dg(X). It is easy to see that
NEGs(X)=U — (POSs(X)UBNDgs(X)) by definition.

The approximation quality of a decision algorithm Dgs(X), denoted by AD, is defined as
the ratio of objects in POSg(X) that are correctly approximated to be in X to all objects in
POSs(X), thus, AD = |[POSg(X)N X|/|POSs(X)|. We also introduce a second quality
measure that is called the approximation quality of a concept X in S and is denoted by
AC. It is defined as the ratio of objects in X that are correctly approximated as POSg(X)
to all objects in X, AC = |POSs(X)N X|/|X]|. To get the overall picture, we propose to



consider the normalized size of intersection between POSg(X) and X. This intuitive idea of
overall approximation quality, denoted by ps(X), can be formalized as follows:

1 _ |XNnPOSs(X)|

X) = — :
MS( ) 81% + Sgﬁ S1 |X‘ =+ S9 ‘POSS(X”

where s; and sy are scaling factors and their sum must be equal to one. These scaling factors
quantify the user’s preference as to amount of increment in accuracy of Dg(X) desired relative
to a certain loss in accuracy of X (or vice versa). If s; = s, = 0.5, then the measure becomes
equal to what we call Dice’s coefficient in information retrieval systems.

In the following, we introduce positive regions of the three approximation methods.

1. The lower bound approzimation: POSY(X) ={z € U : [z]5 C X}.
2. The upper bound approzimation: POS$(X) = {z € U : [z]zNX # 0}.

3. The elementary set approzimation: POSE(X) = U|Rmx|> R;, where 7 denotes a
 mT T
threshold value ranging in (0.5,1] and R; € U/CON, where each R; is called an el-
ementary set.

For all approximation methods stated above, the boundary region BN Dg(X) is equal to
POS%X) — POSs(X), where POSs(X) stands for POS% and « is a wildcard symbol used
to represent different methods of defining positive regions. The set POSs(X) is the largest
and fully contains X when upper approximation is used, while it is the smallest and is
properly included by X when lower approximation is used. In the general case, X can have
elements not in POSg(X), and vice-versa.

2.1 Multi-Concept Classification Methods

Let U/DEC = {X1, Xy,..., Xy} A classification problem is described as generating a de-
cision algorithm from S, Dg(U/DEC), that relates elements of U/CON to that of U/DEC.
If Ds(U/DEC) is a relation then it is called an inconsistent decision algorithm; other-
wise, it is said to be a consistent decision algorithm. Observe that an inconsistent de-
cision algorithm might be interpreted deterministically or non-deterministically. Since

POSs(U/DEC) = U — POSs(X), the extension of an approximation method to its

XeU/DEC
counterpart in classification problem is straightforward. Similarly, the classification qual-

ity ¢s(U/DEC) is equal to ﬁZ?:l | X;| ps(X;). Percentage accuracy of classification of
Ds(U/DEC) is
i=1 | Xi N POSs(X;)|
124
The classification methods based on the approximation methods mentioned above are called

respectively, lower classifier, upper classifier, and elementary set classifier. We are now ready
to formally define the feature selection problem that we want to focus on.

75((U/Df0) =




2.2 The Feature Selection Problem

Let S/ P denotes a substructure of S such that S/P = (U,Q' = PUDEC,U,cp Va, p'), where
P C CON, p is a restriction of p to set U x ¢'. We say that CON — P is 6-superfluous in S
iff

¢s/p(U/DEC) = ¢s(U/DEC)(1 - 0),

where 0 < 6 < 1. Similarly, we say that P is a 0-reduct of CON ifft CON — P is a 0-
superfluous in S and no P’ C P is f-superfluous in S/P. Note that if § = 0 we simply
call them superfluous or reduct. As we have stated before, the feature selection problem
is to choose a small subset of features that is necessary and sufficient to define the target

concept(s). In terms of these new definitions, feature selection problem can be re-expressed
as finding a #-reduct of CON in S.

3 Upper Classifiers

In this paper, we investigate the feature selection problem in the context of upper classifiers.
Our motivation is two fold. First, from the point of data-mining applications, knowledge
discovery methods must deal with incomplete or noisy data. The lower classification method,
a traditional rough set approach, induces a consistent decision algorithm that covers only
certain data. On the other hand elementary set classifiers provide us with a good consis-
tent approximation to unknown concepts when data is uncertain, at the expense of more
demand on disk space. Second, one of the characteristics of data mining is that data is dy-
namic. Neither lower nor elementary set classification methods provide a basis for adaptive
classifiers since they weed out some portion of background knowledge. On the other hand,
upper classification methods assume that such a decision is a matter of how its decision
algorithm is interpreted; that is, an upper classifier keeps track of inconsistency given in the
background knowledge. This feature of upper classification methods enables us to develop a
truly adaptive classifiers. Additionally upper classifiers can be interpreted to yield the same
decisions as the classification method using only lower bounds or elementary sets'. We will
elaborate this point in Section 6.

Since the feature selection algorithms that will be presented in next section use the upper
classifier in their evaluation criterion, it is appropriate to present relevant properties of the
upper classifier. Remark 1 is based on the fact that for all P, B C CON, if P O B then
U/P C U/B, that is, U/P is refinement of U/B.

Remark 1 Let X C U and p%(X) be quality of upper bound approzimation of X in S. Then,
VP,B C CON, P2 B = ugp(X) > pgp(X)

In other words, the quality of upper classification is monotonically decreasing function while
a given feature set is reduced. With respect to the upper classification algorithm shown in

'Any [z] ;55 in S is called elementary set.



Algorithm UCQ(S)
U/DEC = PARTITION(S, DEC)
U/CON = PARTITION(S, CON)
k = [U/CON|; n = |U/DEC|
for(1 =0;i < nji++)
for(j =0;7 <k;j++)
if(X;NR; #0)
POS(X;) = POS(X;) UR;

return ¢g(U/DEC)

O NO O W N -

Table 1: The upper classification algorithm

Table 1, we prove in Theorem 1 that time complexity of upper classifier in the worst case is
bounded by O(Ilm?), where [ and m are the number of condition attributes and objects in

S.

Theorem 1 The computation of upper classifier in Table 1 takes O(Im?) in the worst case,
where | and m are the number of condition attributes and objects in S.

[Proof] Let UDEC = {Xy, X1, ..., X,_1} and UCON = {Ry, Ry, ..., Ri_1} denote the set
of blocks of equivalence relations by the values of DEC and CON on U, respectively. The
time complexity of the algorithm UC'Q) in the worst case is computed as follows: Step 1 and
step 2 take O(mn) and O(Imk), respectively, by the lemma on the nature of the partition
(Sever, 1995). Step 8 takes O(mn), in the worst case, by the lemma on the computation
of quality(Sever, 1995). The computational effort of Steps 4-7 in the worst case would be

expressed as follows.
n—1k—1

> 2 (Xl + [Ry) (1)

i=0 j=0

Since both U/DEC and U/CON are partitions of U, Eq. (1) is bounded by O(m?). Then
time complexity of whole computation in Table 1 is equal to

O(mn) +O(Imk) + O(m?) + O(mn) € O(mn + Imk +m?)
—_—r — —— —
Step1 Step2 Steps4—T7 Step 8

Since either n or k£ would be at most m, the time complexity of UC() in worse case
is O(Im?). O

4 Feature Selection Algorithms
We have developed and experimentally evaluated four algorithms for feature selection. All

these algorithms fall under the class of Sequential Backward Selection (SBS) algorithms.
These methods are:



1.) Best fit SBS (BFS),

(1)
(2.) Hybrid Heuristic SBS (HHS),
(3.) Alternating Heuristic SBS (AHS), and
(4.) K-level Best SBS (KBS).

Before presenting each method, it is worth asserting that the class of SBS algorithms sat-
isfies ’sufficient’ and 'necessary’ conditions of feature selection problem as explained in the
following. According to Remark 1 we already know that the process of pruning a fea-
ture set down does not yield a better classification quality. This fact guarantees that the
family of stepwise backward algorithms satisfies ‘sufficient’ condition of feature selection
problem. Also, it can easily be verified that there is no #-superfluous attribute in the re-
turned set of relevant attributes, F. The last repetition of outer loop (Steps 3-16) in BF'S
algorithm, given in Table 2, verifies that no f € F' can be extracted from F, and yet we
have ¢f. (1 (U/DEC) > ¢¢(U/DEC) * (1 — ). This concludes 'necessary’ part of our claim
in case of BF'S algorithm, but the same reasoning can be carried out for the others.

Remark 1 also enables us to use branch and bound algorithm to find the smallest
f-reduct of relevant features. For a given decision table S and threshold value 6, let the
state of a node in search space be made up of a subset of condition attributes CON, de-
noted by F, and quality of upper classification, denoted Q@(P’OVSZ(F,ADJEC), DEC). State
of the root node is, defined by CON and p(POS§(CON,DEC), DEC). The feasibility
condition for a current node to be expanded is imposed as ©(POSYF,DEC), DEC) >
@(POS%CON,DEC),DEC) * (1 — 6). Then, the objective function is to maximize the
feasibility condition. Now we are going to describe the four algorithms of the family of
sequential backward algorithms.

4.1 Best Fit SBS Algorithm (BFS)

In BF'S, given in Table 2, one starts with the set of all features and features are removed one
at a time. To justify that BF'S algorithm finds a #-reduct of CON in S, we recall that the
quality of upper classifier decreases as the feature set is pruned down (Deogun, Raghavan, &
Sever, 1995; Sever, 1995). In BFS algorithm, we initialize the current node to the root node.
That is, the state of root node corresponds to all the features in the given set, F), and the
CurrentQuality is the quality of classification using these features. We select as the current
node a feasible node whose quality of classification is the highest (best fit) in that level and
then expand this node to get the nodes at the next level. This process is repeated until
the node has a feature set of size at most one or no node at that level meets the feasibility
condition. The time complexity analysis of this algorithm is given by theorem below.

Theorem 2 The time complezxity of BE'S algorithm, given in Table 2, in the worst case is
equal to O(I?J), where | = |CON| is the size of CON and J is the computational effort to
evaluate the classification quality of a given S.



Algorithm BFS(S,0)

1. F=CON

2. Threshold = multiply the quality of F by (1—0)
3. while |F|>1

4. MinQuality = Threshold

5. Found = FALSE

6 for each ce F

7 F=F—{c}

8 evaluate the quality of F' and assign to CurrentQuality
9. if (CurrentQuality > MinQuality)

10. MinQuality = CurrentQuality

11. KeepAttribute = {c}

12. Found =TRUE

13. F=FuU{c}

14. if (Found == true) F = F — KeepAttribute
15. else break

16. return F

Table 2: The Best Fit SBS

Proof. Step 2 takes computational effort of J = O(Im?) as proved in by Theorem 1.
Assume there are t f-superfluous features in S, where ¢ varies over [0,1,...,] — 1]. Let
F; be a set of condition attributes in S/F; at the jth iteration of the outer loop, where
j € l,l—1,...,1 —t]. Similarly, F}; is obtained by removing an attribute ¢; from F; =
{co,¢1,...,¢i,...,c;} at step 7. Thus, the time complexity of BF'S algorithm is equal to

o(lm*)+ > i . (2)

step 2 ‘j:1 ,
steps 3—16
That proves that the time complexity is O(I2J) or O(I3m?) O

4.2 Hybrid Heuristic SBS Algorithm (HHS)

For the HH S algorithm given in Table 3, also, the current node is initialized to root node.
The current node is expanded to its successors which have one less condition attributes than
its predecessors. We then make the first node that meets feasibility condition (first fit) as
the current node. If none of the successor nodes meets the feasibility condition, then we
backtrack only one level and try to find another current node. We continue this process
until the termination condition for the search process is reached. The termination condition
for the search process is either the cardinality of condition attributes becoming one or no
feasible nodes are left to explore in this controlled search space.

9



Algorithm HHS(S,6)
F=CON
backtrack = 0
Threshold = multiply the quality of F by (1 —6)
while |[F|>1
Found = FALSE
for each ce€ F,
evaluate the quality of F — {c}
if quality of F — {c} > Threshold then
Cmin = C
F=F-— {Cmm}
Found =TRUE
backtrack =0
exit the for loop
9. endfor
10. if not Found
11. if backtrack == 0
backtrack = backtrack + 1
F=FU {cmin}
else return F
else;
12. endwhile
13. Return F

0O ~NO Ok WN -

Table 3: The Hybrid Heuristic SBS

The time complexity of HHS algorithm, given in Table 3, in the worst case is equal
to O(I?J), where [ is the size of CON and J is the computational effort to evaluate the
classification quality of a given S.

Step 7 takes computational effort of J = O(Im?) as proved in by Theorem 1. Step 4
through step 12 takes 2 Zézl 1+ C, where C' is the cost to backtrack, and i is the cost to do
the comparison again, when backtracked. This give the complexity of O(I>J) or O(I*m?).

4.3 Alternating Heuristic SBS Algorithm (AHS)

AH S algorithm initializes current node to root node. Then it alternatively uses two heuristics
to determine the current node at alternate levels in the search tree. One of the heuristics
is BF'S, defined earlier. In the other heuristic, the first fit strategy is used to determine
the current node at a level. This process is continued until either the node has only one
condition attribute or none of the nodes at the current level meets the feasibility condition.
The algorithm is given in Table 4.

10



The time complexity of AHS algorithm, given in Table 4, in the worst case is equal
to O(I2J), where [ is the size of CON and J is the computational effort to evaluate the
classification quality of a given S.

This algorithm alternatively uses the Best search algorithm and the First search algorithm
at alternate levels. We have already analyzed these two algorithms. The complexity of each
one of these is O(I>J). Thus, the worst time complexity is O(I>J) or O(I3m?).

4.4 K-level Best SBS Algorithm (K BS)

KBS algorithm divides the search space from root node level (or level-1) to leaf node level
(or level-|CON]) into [@] groups. That is each group of levels has K levels with an
exception of last group which will have less than or equal to K levels. We call root node as
the current node to begin with. Then we determine the best node in first group of levels by
exhaustive search and then kill all other nodes except the best node at the end of searching
this group of levels. Now this node becomes the root node for next group of levels. This
process of finding the best node and eliminating all other nodes at the end of each group of
levels is repeated until the node has only one condition attribute or no feasible nodes are
left in the current group of levels to expand. The algorithm is given in Table 5.

The time complexity of KBS algorithm, given in Table 5, in the worst case is equal
to O(IX*1J), where | = |CON|, K is the number of levels in each group, and J is the
computational effort to evaluate the classification quality.

Step 10 takes computational effort of J = O(Im?) as proved in by Theorem 1. Given that
each group consists of K levels and the size of the feature set is [, the computational effort
required for each group of levels is 1X. We have % levels. Hence the total computational
effort is £1%. Thus the worst time complexity is O(I¥+1.J). If K is controlled as 2, then the
KBS algorithm has a complexity of O(/3.J). Our experimental study is based on this value
of K. It may be noted that K = 1 makes the KBS algorithm identical to BF'S algorithm
with the complexity of O(I?J).

5 Experimental Setup and Results

We have performed experiments with two goals. We wanted to study the performance of
family of Stepwise Backward Selection algorithms on learning data and some real-life data.
Then we wanted to compare the performance of our algorithms with that of some other
approach to classification. Hence, we have divided this section into two subsections. In first
subsection, we discuss the experimental setup that we have used to study the performance
of the algorithms along with some important results. In next subsection, we discuss some
background needed to understand our experiment on data of highly selective vagotomy for
duodenal ulcer, followed by experimental details and results of comparison of our approach
of upper classification to that of lower classification.

11



Algorithm AHS(S,0)
F=CON
Threshold = multiply the quality of F by (1—6)
Level =1
while |[F|>1
Found = FALSE
if level is odd then
for each c € F|
evaluate the quality of F — {c} and assign to CurrentQuality
if quality of F — {c} > Threshold then
KeepAttribute = ¢
exit the for loop
endif
endfor
else
MinQuality = Threshold
for each c€ F,
evaluate the quality of F — {c¢} and assign to CurrentQuality
if quality of F — {c} > Threshold then
MinQuality = CurrentQuality
KeepAttribute = ¢
Found =TRUFE
endif
endfor
endifthenelse
10. if Found
F = F — KeepAttribute
else exit the while loop
11. level level + 1
12. endwhile
13. return F

© 00 N O WN -

Table 4: The Alternating Heuristic SBS
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Algorithm KBS(S,0)

1. F=CON
2. K=2
3. Nlevel = [Mz%ﬁﬂ]
4. Threshold = multiply the quality of F by (1—06)
5. For kindex =1 to Nlevel do
6. Found = FALSE
7. MinQuality=Threshold
8. for j = Kto 1l
9. for each {c¢;}i<i<j
10. evaluate the quality of F' —{¢;} and assign to CurrentQuality
11. if CurrentQuality > MinQuality then
MinQuality = CurrentQuality
KeepAttribute = {¢;}
Found =TRUE
endif
endfor
12. if Found then exit the for loop
endfor

13. if Found then F = F — KeepAttribute
14. if |KeepAttribute| < K

return F
15. endfor

Table 5: The K-level Best SBS

5.1 Comparison of Feature Selection Algorithms

A set of experiments that use traditional machine learning data sets, and a real life data set,
were designed and used to test the performance of upper classifiers based on these algorithms.
The data sets used are from the UC Irvine’s machine learning repository (Murphy and Aha,
1995), except for parity 5+10, XOR, and duodenal ulcer data set. Parity and XOR data
sets are artificial data sets where the parity 5+10 is the concept of parity of five bits with
ten irrelevant bits and XOR is the concept of parity ‘exclusive or’ with thirteen irrelevant
bits. The duodenal ulcer data set has earlier been used by Pawlak et al. (1986) and is the
data about 77 patients with duodenal ulcer treated by highly selective vagotomy (HSV). If
the data set has a test set, then we use that, otherwise, we randomly choose two third of
the objects from each class of the corresponding data set.

Table 6 shows the data sets used with their number of attributes, training and test set
sizes. Table 7 and Table 8 show the percentage of accuracy (vs) for different data sets and
different methods using same data sets for test and training and different data sets for test
and training. Before percentage of accuracy is computed for an upper classifier, an inconsis-
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data set Size No. of Attributes
Training set | Test set
Glass 66 148 9
Breast cancer 211 488 9
Parity 5+10 226 524 15
Iris 45 105 4
Monk 1 124 432 6
Monk 2 169 432 6
Monk 3 122 432 6
Vote 132 303 16
Soybean-s 15 32 35
XOR 226 524 15
Mushroom 2439 5685 22
Hepatitis 47 108 19
Duodenal ulcer 21 56 11

Table 6: Test and Training sets for different various data sets.

tent decision algorithm must be interpreted. As we explain in section 6, the interpretation
can be deterministic or non-deterministic. In our experiments, the deterministic interpreta-
tion is applied. The test sets used in the first group of experiments are used both as training
and test sets in the second group of experiments. We call the first group as Predictive Ez-
periments and the second group as Upperbound Experiments. Upperbound Experiments are
seen as providing upper bound on the accuracy achievable by the Predictive Experiments.
These tables give the accuracies of the upper classifier without and with the feature selection
algorithms. Table 9 and Table 10 present the feature subsets and percentage of reduction in
feature sets for different data sets using different feature selection algorithms. Table 10 refers
to the results of Predictive Experiments whereas Table 9 refers to the results of Upperbound
Experiments. Table 11 and Table 12 show the number of nodes visited for different data sets
using different methods. Table 11 has the result for Predictive Experiments and Table 12 has
the result of Upperbound Experiments. Note that for all training sets we set the threshold
0 to 0.5%.

When a data set contains a missing value, we assume that it is a non-quantitative value
and distinct from any other value, including other occurrences of missing values. One may
raise the objection to the feasibility of our assumption on the base that missing values may
come from unknown attribute values. We would like to point out that such treatment of
missing values does not harm our experiment because our purpose in this experiment is to
simply compare the performance of the upper classifier with and without the family of SBS
algorithms. Given a test set, the accuracy of an upper classifier is defined by v&(U/DEC).
When the description of a given object does not match to known concepts we use 5NNR
classification scheme with Euclidean distance function to determine the five closest concepts.
The difference between two values of an attribute are computed as suggested in Relief al-
gorithm (Kira & Rendell, 1992); that is, the difference between two non-quantitative values
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data set Accuracy in %

UC | UC+BFS | UC+AHS | UC+HHS | UC+KBS
Glass 100 100 100 100 100
Breast cancer 100 99.6 99.6 99.6 99.6
Parity 5+10 100 100 98.7 98.7 100
Iris 92.2 95.2 95.2 95.2 95.2
Monk 1 100 83.3 75 75 83.3
Monk 2 100 84.7 78.9 78.9 84.7
Monk 3 100 100 100 100 100
Vote 100 99.3 99.3 99.3 99.3
Soybean-s 100 100 100 100 100
XOR 100 100 100 100 100
Hepatitis 100 100 100 100 100
Duodenal ulcer | 100 98.2 98.2 98.2 98.2

Table 7: Comparison of classification accuracies of UC and other algorithms on real data
sets using Upperbound Experiments.

data set Accuracy in %

UC | UC+BFS | UC+AHS | UC+HHS | UC+KBS
Glass 64.3 36.5 53.4 50 36.5
Breast cancer 96.4 91.8 93.1 95 91.8
Parity 5+10 55.5 100 52.9 55.9 100
Iris 92.4 94.3 94.3 94.3 94.3
Monk 1 86.1 100 70.4 70.4 100
Monk 2 74.8 67.8 67.8 67.8 67.8
Monk 3 90 93.5 93.8 93.8 93.5
Vote 91.1 95.4 95.7 93.4 95.4
Soybean-s 96.9 61.1 100 100 100
XOR 78.1 100 100 100 100
Mushroom 99.5 99.7 99.6 99.8 99.7
Hepatitis 75.9 77.8 81.5 78.7 77.8
Duodenal ulcer | 58.9 58.9 53.6 33.9 53.6

Table 8: Comparison of classification accuracies of UC and other algorithms on real data
sets using Predictive Experiments.
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data set UC+BFS UC+AHS UC+HHS UC+KBS
Attr. Subset | %Re. | Attr. Subset | %Re. | Attr. Subset | %Re. | Attr. Subset | %ZRe.
Glass 0.1 78 5] 78 56| 78 01 78
Breast 0234 | 56 3456 | 56 56,78 | 56 0234 | 56
Parity 0,1,2,3,4 67 1-5,7-14 13 1-2,4-14 13 0,1,2,3,4 67
Iris 2,3 50 2,3 50 2,3 50 2,3 50
Monk 1 0,1 67 4 83 4 83 0,1 67
Monk 2 0,1,2,3.5 17 1,2,3.4,5 17 1,2,3.4,5 17 0,1,2,3,5 17
Monk 3 1,34 | 50 1,34 | 50 1,34 | 50 1,34 50
Vote 0-3,9-11 56 2.3,6,7,9 2,3,10-12 0-39-11 | 56
11,1415 | 50 1415 | 56
Soy-s 023 | 91 20,21 | 94 21,28 | 94 023 | o1
XOR 3.8 87 3,8 87 3,8 87 3.8 87
Hepatitis | 0,2,4,57-9 | 63| 89,1011,13 | 74| 121517,18 | 79| 024579 | 63
Duodenal 3,4,5,6 1,2,4,5 4,5,6,7 1,2,4,5
Ulcer 7910 | 36 7910 | 36 91011 | 36 7910 | 36

Table 9: Comparison of reduction in attribute sets for heuristics for Upperbound Experi-
ments.

is one if they are different and zero otherwise, and the difference between two quantitative
values is normalized into the interval [0,1]. Thus, no domain knowledge on data sets is
exploited, except the type of attributes, e.g., quantitative or non-quantitative.

We first consider results from Table 7 and Table 8. Except for Glass, Monks, and
Hepatitis data sets, the performance obtained in Predictive Experiments approach those
in the case of Upperbound Experiments. This suggests that for Glass, Monks, and Hepatitis
data sets, the training sets are not well designed. Since reduced training sets of XOR
and Parity data sets were complete, in the sense that they contained all combinations of
corresponding relevant attributes, BF'S 4+ UC and KBS + UC performed much better than
UC did. For XOR data set, AHS +UC and HHS + UC also performed much better than
UC did. The only data sets for which BFS + UC performed worse than UC' were small
soybean, and glass data sets. AHS + UC, and HHS + UC' performed worse than UC on
glass, monk1, and monk2 data sets. KBS + UC performed poorly only in the case of glass
data set. In the case of Upperbound Experiments, only monk1 data set performed relatively
worse in the case of all the heuristics.

Considering Table 9 and Table 10, on XOR data set, all algorithms found the smallest
reduct of the attributes. On the other hand, on Parity data sets, BF'S and KBS algorithms
found smallest reduct of attributes. The average percentage of the reduction in features
of data sets is 68.83% in the cases of BF'S + UC and AHS + UC, 60.25% in the case of
AHS+UC and 59.07% in the case of HHS+UC in the case of Predictive Experiments. The
average percentage of the reduction in features of data sets is 62% in the cases of BF'S+UC
and AHS +UC, 59.27% in the case of AHS + UC and 60.27% in the case of HHS + UC
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data set UC+BFS UC+AHS UC+HHS UC+KBS

Att. Subset | %Red. | Att. Subset | %Red. | Att. Subset | %Red. | Att. Subset | %Red.
Glass 0 89 5.6 78 5.6 78 0 89
Breast 0,2 89 3,5,6 67 5,6,7.8 56 0,2 89
Parity5-+10 0,1,2,3,4 67 |  2-9.11-14 20 2,3,5,6 0,1,2,3,4 67

7.9-14 27
Iris 2 75 2 75 2 75 2 75
Monk 1 0,1,4 50 1,2,3,4,5 17 1,2,3,4,5 17 0,1,4 50
Monk 2 1,2,3,4,5 17 1,2,3,4,5 17 1,2,3,4,5 17 1,2,3,4,5 17
Monk 3 0,1,3,4 33 1,3, 4,5 33 1,3,4,5 33 0,1,3,4 33
Vote 1,2,3,6,8 69 | 3,7,89,10 69 | 3,13,14,15 75 1,2,3,6,8 69
Soybean-s 0,2,3,5 89 20,21 94 26,27,34 91 0,2,3,5 89
XOR 38 87 38 87 38 87 3,8 87
Mushroom 2,49 49,10,14 82 8-10,15 2,4,9
10,13 77 19-21 68 10,13 77

Hepatitis 0,2,4 84 8,10,13 84 15,17,18 84 0,2,4 84
Duodenal 56,7 73 1,2,3 73 6,8,9,11 64 1,2,4 73
Ulcer

Table 10: Comparison of reduction in attribute sets for heuristics for Predictive Experiments.

in the case of Upperbound Experiments. When Parity and XOR, were ignored, the average
percentage of the reduction in features of data sets is 68.20%. These results indicate that
all the proposed algorithms find a small subset of features that are sufficient to define target
(or unknown) concepts.

Table 11 and Table 12 give an indication of how fast the feature selection process is, for
different feature selection algorithms. These feature selection methods take time proportional
to the number of the nodes they have to visit in order to obtain the smallest possible subset
of attributes. Generally speaking, the number of nodes visited is a function of training data
sets, number of initial attributes, and the feature selection method used. For example, if the
initial number of attributes are fewer in number, then UC + AHS and UC'+ HH S are faster
for all the data sets except the parity, monkl, monk2, and monk3. We also notice that, the
algorithms UC' + BF'S and UC + KBS have performed equally well, in terms of accuracy
and the percentage reduction in the size of the feature set, for all the data sets. However,
UC + KBS is more efficient as can be seen by the number of nodes visited by this algorithm
compared to that visited by the algorithm UC + BF'S. Hence, if initial set of features is
large, then UC 4+ KBS can be recommended as a suitable choice. However, if feature set is
small, then either UC' + ABS or UC + HHS can be used depending on the data set used.
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data set Number of nodes visited

UC+BFS | UC+AHS | UC+HHS | UC+KBS
Glass 45 26 21 25
Breast cancer 44 30 25 26
Parity 5+10 110 149 198 60
Iris 10 6 7 6
Monk 1 18 26 31 13
Monk 2 11 26 31 11
Monk 3 15 22 27 10
Vote 126 89 45 71
Soybean-s 624 325 62 324
XOR 119 69 39 65
Mushroom 243 149 123 131
Hepatitis 187 105 32 99
Duodenal ulcer 41 63 43 35

Table 11: Comparison of number of nodes visited by the algorithms on real data sets for

Predictive Experiments.

5.2 Comparison of Performance of Upper and Lower Classifiers
on Duodenal Ulcer data set

The data on highly selective vagotomy for duodenal ulcer consists of 77 patients. Each
patient has been described using 11 characteristics (attributes). The data has been described
in detail in Pawlak, Slowinski, and Slowinski (1986). Based on these attributes, the patients
have been classified into four classes of excellent, very good, satisfactory, and unsatisfactory.

In order to use the same basis for comparison of performance of upper and lower classifiers,
we have conducted our experiments in following phases. First, we analyzed the data set and
results given in Pawlak, Slowinski, and Slowinski (1986), by using the lower approximation
(LC) method. They have derived three reduced feature sets, denoted by case E, G, and H
respectively. They have studied the percentage accuracy of classification for each of these
feature sets using lower classifier. We then, computed 1 —~%(U/DEC) for each of these cases
of E, G, and H as 12%, 9%, and 9% respectively. We decided to use 9% for the value of 6,
as it was obtained in two out of three cases, and it will allow fewer misclassification when
the judgement on classification will be made.

Using # equal to 9%, we conducted the detailed experiment on this data set. We derived
reduced feature set and computed the accuracy of upper classifiers for each of the algorithms,
described earlier. Again, for the purposes of computing the percentage of accuracy, an
inconsistent decision algorithm is interpreted deterministically (see section 6). The result is
tabulated in Table 13 and indicates a higher accuracy of classification for upper classifiers
compared to lower classifiers for all the cases (E, G, and H) of duodenal ulcer data. The
fact that upper classifier gave better accuracy than lower classifier for all the cases can be
explained as follows: In case of lower approximation, the patients were classified as unknown
when they were in boundary region (in case of doubt). In the upper approximation, even
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data set Number of nodes visited

UC+BFS | UC+AHS | UC+HHS | UC+KBS
Glass 44 26 21 26
Breast cancer 39 33 25 25
Parity 5+10 110 184 212 60
Iris 9 8 8 6
Monk 1 20 12 9 12
Monk 2 11 26 31 11
Monk 3 18 17 28 13
Vote 115 120 117 67
Soybean-s 627 325 62 323
XOR 119 69 16 65
Hepatitis 169 116 47 91
Duodenal ulcer 69 45 92 27

Table 12: Comparison of number of nodes visited by the algorithms on real data sets for
Upperbound Experiments.

Algorithms | % Accuracy | Reduced Feature Set | % Reduction | # of Nodes Visited
LC with E 88 4,5,6,9,10 55 Not Available
LC with G 91 3,4,5,6,9 55 Not Available
LC with H 91 3,4,6,9,10 55 Not Available
UC+BFS 96 2,4,5,79,10 45 51
UC+AFS 96 4,5,6,9,10 55 52
UC+HHS 96 4,5,8,9,10,11 45 62
UC+KBS 96 3,4,5,6,9 55 32

Table 13: Comparison of Accuracies, Reduced Feature Set and Number of Nodes Visited
using various algorithms for Upper Classifiers.

in the case of boundary region we classify the patient as belonging to the concept. In some
applications, it may be considered risky to have unknown cases as belonging to the concept.
However, we can adjust the parameters s; and s, in the expression for pg(X). At present,
we are using 0.5 for both s; and s,.

We also computed the percentage reduction in the size of feature set, and the number
of nodes visited. This result is also given in Table 13. As we see in this table, the pruned
set of attributes is same for lower approximation (Case E) and the upper approximation
using AF'S algorithm as given in Table 13. The percentage reduction in feature set is also
found to be the same when we used UC + AF'S and UC + KBS algorithm as that of lower
classifier (cases E, G, and H). Also UC + KBS has again given best performance for the
number of nodes visited, as we have seen in the case of other data sets. Hence it is the fastest
algorithm for this data set also. For data set on duodenal ulcer, UC + KBS has given best
performance out of all the algorithms with respect to accuracy of classification, feature set
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reduction, and the computational time.

6 Extended Decision Table

The classification methods are data driven methods, and hence, it is unrealistic, in most
cases, to expect that the decision rules obtained from a snapshot/part of a database will
stand up no matter how the database changes over time. Therefore, one usually associates
some frequency information with the decision rules to make them incremental. We call
such information incremental information. They are not related with the contents of a
decision table but provide information about the accuracy of each rule or the likelihood of
its occurrence. Let CON_SAT be an event consisting of objects that satisfy the condition
part of a decision rule in a base decision table?, and let RULE_SAT be an event consisting
of objects being classified correctly by the same decision rule. Then incremental information
of a decision rule is composed of the sizes of CON_SAT and RULE_SAT.

To incorporate incremental information into the decision table, we introduce the notion
of Extended Decision Table (EDT) in which each row corresponds to a decision rule. We
use EDT to represent a decision algorithm that is induced such that the antecedent part of
each rule corresponds to only one elementary set in the base decision table. Details of EDT
are omitted for lack of space and can be found in Deogun, Raghavan, and Sever (1994). The
important point to note, however, is that EDT can be useful in three places.

First, EDT enables us compute the accuracy measure of a decision rule. Second, EDT
is adaptive because any data entry into ( or update on) its base decision table is easily prop-
agated to it. Observe that the feedback channel we consider here is between EDT and base
decision table. Third, EDT enables us to interpret inconsistent decision algorithms either
deterministically or nondeterministically as explained here. A deterministic interpretation
of an inconsistent EDT would be to always select the row whose accuracy measure (is pro-
portional to RULE_SAT) is the maximum among the repeating rows for a given x € U. On
the other hand, a nondeterministic interpretation of inconsistent EDT would be to select a
row randomly when there is a conflict in the value of the consequent part among the rows
for a given x € U. The random choice can be biased in proportion to the relative values of
the approximation accuracy of the rows or other criteria (e.g. in proportion to the number
of training samples associated with various values of the consequent).

7 Conclusion

We have proposed and experimentally evaluated four feature selection algorithms that find
a f-reduct of a given feature set in polynomial time. We have used learning data sets and
a real data set on duodenal ulcer. Based on our experiments, we show that we can find
f-reduct by only visiting a small portion of the state space. In one group of experiments,
the same data is used to both train and test a classification system, in order to determine an

2 A base decision table is the one from which the decision algorithm is obtained.
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upper bound on the performance of that system. It has been shown that results of predictive
experiments for most data sets are very close to these ideal conditions. These algorithms
can be used with any method of deriving a classifier where the quality of classification is
a monotonically decreasing function while feature set is reduced. In our comparison of the
performance of upper classifiers with those of lower classifiers, where only duodenal ulcer
data set was used, we found upper classifiers to perform better than lower classifiers. It is
also shown that an upper classifier can be summarized at a desired level of abstraction by
using extended decision tables. We also point out that an inconsistent decision algorithm
can be interpreted as if it were a consistent decision algorithm.
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