
Content-Based Image Retrieval
System

Submitted to:
Dr. Raghavan

Submitted by:
Chao Wang (cxw3681@cacs.louisiana.edu)

URL:http://cypress.cacs.louisiana.edu:8080/cxw3681/jsp/IRMain.jsp

2

1. Introduction
This project is the continued work of Biren N. Shah's master thesis project "Generic and
Efficient Online Content-based Image Retrieval". The primary purpose of the new work
is to add a web-based interface to the existing CBIR engine.

2. Method
1) Tools: Jakarta Tomcat Version 3.2.1 (Web Server)

• Configurations of Tomcat:
Download tomcat web server from http://jakarta.apache.org/tomcat/ and install
and configure the web server using instructions from
http://jakarta.apache.org/tomcat/tomcat-3.2-doc/uguide/tomcat_ug.html

Important changes to the configuration file “server.xml”:
1. Change port number when necessary: change to 8080 or any other port that you want

to use.
<!-- ==================== Connectors ==================== -->

<!-- Normal HTTP -->
<Connector className="org.apache.tomcat.service.PoolTcpConnector">
<Parameter name="handler"
value="org.apache.tomcat.service.http.HttpConnectionHandler"/>
<Parameter name="port" value="8080"/>
</Connector>

2. Add a new context: (After adding a new context, you would have a relative
independent directory to work with: $TOMCAT_HOME/webapps/cxw3681

<Context path="/cxw3681"
 docBase="webapps/cxw3681"
 crossContext="false"
 debug="0"
 reloadable="true" >
</Context>

• Notes of using Tomcat:
1. All servlet and other class files should reside in:

$TOMCAT_HOME/webapps/cxw3681/WEB-INF/classes/
2. All jsp files should reside in: $TOMCAT_HOME/webapps/cxw3681/jsp/
3. All java bean files should belong to a specific package, and a directory by the same

name as the package has to be created in
$TOMCAT_HOME/webapps/cxw3681/WEB-INF/classes/, and the class files of
beans should reside in that newly created directory.

4. All the images used in the jsp files should use relative path instead of absolute path,
whose location should be stated relative to
$TOMCAT_HOME/webapps/cxw3681/jsp/

5. All files using by servlet (input or output) should use absolute path instead of relative
path, otherwise it’s hard to find the files.

3

2) Languages: JSP (Java Server Page), Java Bean, Java Servlet, Java
Advantages of Servlets Over "Traditional" CGI

• Efficient. With traditional CGI, a new process is started for each HTTP request. If
the CGI program does a relatively fast operation, the overhead of starting the
process can dominate the execution time. With servlets, the Java Virtual Machine
stays up, and each request is handled by a lightweight Java thread, not a
heavyweight operating system process. Similarly, in traditional CGI, if there are N
simultaneous request to the same CGI program, then the code for the CGI
program is loaded into memory N times. With servlets, however, there are N
threads but only a single copy of the servlet class. Servlets also have more
alternatives than do regular CGI programs for optimizations such as caching
previous computations, keeping database connections open, and the like.

• Convenient. Hey, you already know Java. Why learn Perl too? Besides the
convenience of being able to use a familiar language, servlets have an extensive
infrastructure for automatically parsing and decoding HTML form data, reading
and setting HTTP headers, handling cookies, tracking sessions, and many other
such utilities.

• Powerful. Java servlets let you easily do several things that are difficult or
impossible with regular CGI. For one thing, servlets can talk directly to the Web
server (regular CGI programs can't). This simplifies operations that need to look
up images and other data stored in standard places. Servlets can also share data
among each other, making useful things like database connection pools easy to
implement. They can also maintain information from request to request,
simplifying things like session tracking and caching of previous computations.

• Portable. Servlets are written in Java and follow a well-standardized API.
Consequently, servlets written for, say I-Planet Enterprise Server can run virtually
unchanged on Apache, Microsoft IIS, or WebStar. Servlets are supported directly
or via a plugin on almost every major Web server.

• Inexpensive. There are a number of free or very inexpensive Web servers
available that are good for "personal" use or low-volume Web sites. However,
with the major exception of Apache, which is free, most commercial-quality Web
servers are relatively expensive. Nevertheless, once you have a Web server, no
matter the cost of that server, adding servlet support to it (if it doesn't come
preconfigured to support servlets) is generally free or cheap.

Advantages of JSP

• vs. Active Server Pages (ASP). ASP is a similar technology from Microsoft. The
advantages of JSP are twofold. First, the dynamic part is written in Java, not
Visual Basic or other MS-specific language, so it is more powerful and easier to
use. Second, it is portable to other operating systems and non-Microsoft Web
servers.

4

• vs. Pure Servlets. JSP doesn't give you anything that you couldn't in principle do
with a servlet. But it is more convenient to write (and to modify!) regular HTML
than to have a zillion println statements that generate the HTML. Plus, by
separating the look from the content you can put different people on different
tasks: your Web page design experts can build the HTML, leaving places for your
servlet programmers to insert the dynamic content.

• vs. Server-Side Includes (SSI). SSI is a widely-supported technology for
including externally-defined pieces into a static Web page. JSP is better because it
lets you use servlets instead of a separate program to generate that dynamic part.
Besides, SSI is really only intended for simple inclusions, not for "real" programs
that use form data, make database connections, and the like.

• vs. JavaScript. JavaScript can generate HTML dynamically on the client. This is
a useful capability, but only handles situations where the dynamic information is
based on the client's environment. With the exception of cookies, HTTP and form
submission data is not available to JavaScript. And, since it runs on the client,
JavaScript can't access server-side resources like databases, catalogs, pricing
information, and the like.

• vs. Static HTML. Regular HTML, of course, cannot contain dynamic
information. JSP is so easy and convenient that it is quite feasible to augment
HTML pages that only benefit marginally by the insertion of small amounts of
dynamic data. Previously, the cost of using dynamic data would preclude its use
in all but the most valuable instances.

3) Interface Architecture: see Fig.1
Jsp files:
There are 5 jsp files. IRMain.jsp is the main page. IRMethod.jsp is the method selection
which is common to all three options. IRImageTable.jsp, IRPalette.jsp, and IRChoose.jsp
are files specific to each option respectively. When the jsp file is first loaded , it will
create beans, and then get information from beans, so it could display page dynamically,
which is also true when servlets update beans and redirect back to the jsp files when they
could get the updated information. In jsp files, it creates forms, which are the same as in
the traditional html pages. So the jsp files pass all the responsibilities of handling user’s
requests to servlets.

Beans :
There are two beans used in this program: RandomPicsBean, ColorBinBean.

RandomPicsBean is used to randomly select pictures to display when is used in the first
option, which gives the user the choice to randomly display a set of images in the
database. When user selects an image as an query image in the first option or gives a
query request in the second or third option, this bean is also used to store query results
from servlets handling the request.

ColorBinBean is used to find out and display all the color bins used in the CBIR engine
in the second option, and also used to store user defined color amounts.

5

Both beans also have variables related to validating user’s inputs, such as uploading the
right image type, entering a valid number, etc. The request handling servlet will check the
user’s input and set the beans’ variables if anything turns wrong. Then the jsp file will
display appropriate warnings accordingly.

Servlets:
All the user’s searching requests are handling by servlets. (First option by IRChoose,
second option by IRPalette, and third option by IRUpload) They parse the user’s
requests, get the needed information from beans and interact with CBIR engine by calling
the right functions to find the results, then store the results in beans, set variables when
there is something wrong with the requests and redirect back to the jsp files where the
user is able to see the results or proper warnings.

4) Code Flow Chart: see Fig. 2
All the files and their functions residing in solid rectangular are newly created in this
project; those residing in dashed rectangular are files and functions already existing in the
previous project.

5) Additional notes on implementing the project:
Database population:
First method: Only populate initial set, other images could be added online.

Main and Similarity methods: Should repeat the population phase for the initial set and
each clustering, but now I only implement the initial set. That is all images in the
database are treated as initial set images.

Input (add file) image file should be of ppm format (extension is ppm), pjpeg utility is
used to convert jpeg images to ppm format. Quantized version of the file is also of ppm
format; Histograms created are stored in <filename>.ppm.hst type in the hstfiles
directory.

Images are not stored into the database directly. The high level feature vector of each
image is found during the database population phase and is stored in the database. There
is mapping from each vector to the corresponding image. The vectors are retrieved from
the database during retrieval. Once the vectors are retrieved, you could use the mapping
to display the image which is stored somewhere in the directory.

When doing database population, perform each step and then check whether the
modifications desired after each step are actually taking place. For instance, after
performing step 1, make sure that histograms data is actually created, .ppm.hst is not
empty.

When populating database using a large number of images, when going through
“ppmquantall 64 + all file names”, it will give the error: “pnmcat: Too many open files,
ppmquant: EOF / read error reading magic number”, which will lead to not executing this

6

command at all, so the intermediate result will be too large to keep. To deal with that,
type “limit descriptors 1024” at the unix prompt.

In “CreateHashTable_IncludeAllBins.java”, I do the normalization into a scale 0-100,000
when reading in from the .hst files to create .lst files instead of storing the frequency
count values as it is. In this way, I could use it for the second option and also make it
extensible to any other image size.

There is some Biren’s code, which will create the intermediate files, such as
“miscdata.lst”, that is the same for the three methods, it will not work when the three
methods have different size of initial set. I change them to include method name in the
file name, so it will work in that case.

Online addition:
Only first method support online addition, main and similarity methods don't support it.

Image retrieval and online addition follow almost the same steps. The only difference is
that the data created for an image which is to be online added has to be saved somewhere
for future use whereas for query image the same data is not stored. All the retrieval data
once the retrieval results are displayed is deleted.

Retrieval:
First method can retrieve an image not already existing in the database.

Main and Similarity methods only permit query image already in the database, not a new
image. If using clustering approach, it first compute distance to the initial set, for the
relevant ones, then go further into clusters to compute distances, then rank the whole
results. Now it only implements to first level. It doesn’t work from Biren’s retrieval
interface. Biren wrote some test programs to perform the experiments. Those test
programs are not connected to the actual system... files with names CbirTest1, 2, 3 are the
test programs, and the results in them are not direct as far as the main and similarity
method retrieval is concerned. The results of those test programs are formatted and listed
in a manner to report them in his thesis, and those results can be used to derive the main
and similarity method retrieval results. In his “ImageRetrievalProcess.java”, there is
some code for main method also along with first method, but it does not work. He tested,
but may not have removed that part of the code from the program. For the first level
retrieval, I rewrite the code in “ImageRetrievalProcessForMainAndNew.java”.

The real distance is the same for all methods. The estimated distance computation is same
for all methods too. Only the high level feature vectors for the three methods are
different.

Others :
To keep files organized, I add “package” statements in Biren’s code.

3. Results

7

1) New functionalities:
a. Makes the CBIR engine web-enabled, provides an interface that could be

accessed on-line.
b. Provides retrieval function for main and similarity-preserving embedding

methods (populate all images in the database as initial set)
2) Testing: compares the image retrieval results with the test results included in

Biren’s thesis (reside in his CD-ROM /results/experimentsondwr75/20/e12.txt)
3) Future work: populate the database using clustering approach.

4. References
"Generic and Efficient Online Content-based Image Retrieval", Biren N. Shah, Master
Thesis, Spring 2001

8

Browser

JSP Servlet

Bean

Create/Update Access/Update

Request Response

Request

Redirect

CBIR Engine

Interface

Figure 1: Interface Architecture

9

CBIR Main Page
(IRMain.jsp)

Option 1: choose a sample
image existing in the database

(IRMethod.jsp +
IRImageTable.jsp)

Option 2: specify colors from
color palette

(IRMethod.jsp + IRPalette.jsp)

Option 3: upload a sample
image

(IRMethod.jsp + IRUpload.jsp)

RandomPicsBean.java
(setReady, isReady,
setFormat, isFormat,
setColorsAmt,
getColorsAmt,
getColorBin,
format,
clear)

ColorBinBean.java
(setValidUploadImageType,
isValidUploadImageType,
setUploadImage,
getUploadImage,
setPics, getPics,
setNum, getNum,
setRandom, isRandom)

IRChoose.java
(doGet)

IRPalette.java
(doGet, createhstlstfile)

IRUpload.java
(doGet, doPost)

CBIRLibrary.java
(readMainRGBFile,
readMiscData)

MainRGBFile.java
(getMainRGBValues,
getMainRValues,
getMainGValues,
getMainBValues)

MiscData.java
(getScaleDownFactor)

(RetrieveImages.java)

CBIRLibrary.java
(readMiscData,
readDistanceData,
readAdditionalRetrievalData,
)

MiscData.java
(getMaxColorPPMFile,
getNoOfImages)

Distance.java
(getA, getO, getDistance)

AdditionalRetrievalData
(getE)

ImageRetrievalProcess.java
(mainFunction)

ImageRetrieval
ProcessForMain
AndNew
(mainFunction)

ColorBinFreqC
ount.java

com.oreilly.serv
let.MultipartRe
quest.java
(getFileNames,
getFilesystemN
ame,
getContentType
)

colorpalette.lst

Figure 2: Code Flow Chart

