Structural Abstractions of Hypertext Documents for Web-based
Retrieval

Jitender S. Deogun
The Department of Computer Science & Engineering
University of Nebraska
Lincoln, NE 68588, USA

Hayri Sever
Department of Computer Science & Engineering
Hacettepe University
06532 Beytepe, Ankara, Turkey.

Vijay V. Raghavan
The Center for Advanced Computer Studies
University of Southwestern Louisiana
Lafayette, LA 70504, USA

Abstract

There have been conflicting views in the literature on
the capability of tools and mechanisms for storing and
accessing information over Internet. On one hand it
has been claimed for a long time that World Wide Web
offers a chaotic environment for Web agents to extract
information because the description of a document by
HTML 1is easily comprehensible by humans, but is not
so by machines. On the other hand, it has been hy-
pothesized that information is sufficiently structured to
facilitate effective Web mining, especially for electronic
catalogs. In this article we do not intend to take posi-
tion on this matter, but rather investigate the perfor-
mance of a search engine while indexing more logical
elements of HTML documents and while increasing the
scope of indexing process.

1. Introduction

The exploration of structures is not a new approach.
Etzioni in [3] argued the structured Web hypothesis:
Information on the Web is sufficiently structured to
facilitate effective Web mining. He suggested follow-
ing three subtasks for Web mining, namely resource
discovery, information extraction, and generalization.
The resource discovery focuses on the automatic in-

dexing and (furthermore classifying) Web documents.
Information extraction involves in dynamically extract-
ing specific information from newly discovered Web re-
sources, such that the need for hand-coded ”wrappers”
to access the resource and parse its response can be
eliminated or reduced. Generalization discovers regu-
lar patterns at (or inductively learns) individual Web
sites and across multiple sites.

ShopBot [2], a Web mining agent specialized on
electronic catalogs, uses descriptions of domains and
vendors as prior knowledge to compare vendors by
an attribute (say, price) for given a characterization
of the desired product. The domain description
includes information about product attributes useful
for discriminating between different products and
between variants of the same product, heuristics for
understanding vendor pages, and seed knowledge for
inductive learning. On the other hand, the vendor de-
scription consists of the URL address of a search form
provided by the vendor, a function mapping product
attributes to fields of that form, and a parsing function
that extracts a set of individual product descriptions
from pages returned by the search form. Thus, the
learning module of ShopBot involves the structures
in which product descriptions are presented and the
search form from which the desired product attributes
are extracted. Structural regularities are based on the
following observations: (a) Online stores are designed

so consumers can find things quickly, (b) Vendors
attempt to create a sense of identity by using a uniform
look and feel, and (c¢) Merchants use whitespace to
facilitate customer comprehension of their catalogs,
even if they use different product description formats.
A case study on electronic commerce sites such as ”In-
ternet Shopping Network (http://www /internet.net)”
and "NECX Direct (http://necxdirect.necx.com)”
reveals that
<a>texttext and
<a>texttext
 are common
line descriptions in which product information is
encoded [2].

Similarly, WebSeek, image and video search engine
located at http://www.ctr.columbia.edu/webseek,
also utilizes structural regularities to index the
images and videos [5]. It uses key terms
contained in and
[hyperlink text] as well as terms
in directory names to classify the subjects of hyper ob-
jects through a key-term dictionary. This dictionary
provides a set of mappings from key terms to subject
classes.

The characteristic features of Web catalogs ! we con-
sider important for the retrieval engine are as follows.

e Highly structured documents. Of them we
are mainly interested in paragraphs, lists, and ta-
bles that are used in characterizing description of
an information unit 2, in regard to user’s need. In
the case of tables it is usual to find the information
unit defined by attributes well as their domain val-
ues (or index words). A concept can be defined in
terms of either its intension (i.e., its attributes)
or its extension (i.e., its tuples). For the sake
of clearness, we call a relation a complex concept
and a single attribute a simple concept. The table
structure contains both intension and extension of
a complex concept. A paragraph contributes the
extension of given a concept and is represented in
terms of index words. A list structure is a hybrid
structure of above two. The contents of items of
a list structure represent the extension of a given
concept and the items themselves constitute the
intensional part of a complex concept with miss-
ing attribute names.

e Hierarchical organization of Web pages.
Products in Web catalogs are usually presented to
prospective customers through a number of hier-
archies based on some predefined (and non exclu-
sive) categories (e.g., computer products may be

LA Web catalog is an electronic catalog described by HTML
and accessed through HTTP.

2Throughout the paper we use the terms concept and infor-
mation unit interchangeably.

categorized by PC, MAC, Supplies, Vendors, and
Network). Given that there is no enough textual
content to capture an embedded hierarchy and ab-
sence of appropriate mechanism to label semanti-
cal links, it is almost impossible to extract the em-
bedded hierarchies, though some generalization re-
lationships can be very valuable from the perspec-
tive of processing queries for gathering relevancy
information. For example the quality of the re-
trieval output obtained as a result of processing
the query that requires to find 166MHz desktops
is likely to be improved in terms of precision and
recall metrics when the categorization of PCs with
respect to the case and processor type is available
to the retrieval engine. It is, however, our experi-
ence that the Web pages located at close proxim-
ity of bottom nodes of hierarchies (when visited by
breadth-first expansion upon disregarding backup
links) usually contain product information or ag-
gregation of products.

Given that a hypertext database of products is a col-
lection of highly structured pages, the interesting two
questions would be what the logical units of the infor-
mation, which are useful enough to satisfy users’ needs,
and in which nodes (or region) we should attempt to
locate these useful structures. To address these issues,
in this article, we propose to experimentally determine

e the types of HTML structures to be utilized for
indexing purposes, and

e the types of Web pages in given a hypertext
database used as a document collection of the re-
trieval engine.

2. Functional Modules of Architecture

This work is a prelude step for the implementation
of a prototype that had been proposed in response to
the need for an intelligent information system to sup-
port various missions of the Defense Logistics Agency
(DLA). The goal of the proposed system is to develop
a distributed information system in which (a) the sup-
pliers can potentially identify the number or volume
of their parts needed by customers, (b) the customers
in need of parts can locate and possibly order parts
from suppliers, and (c) the DLA can evaluate the over-
all state of the military readiness. In this section we
review some corresponding components of the architec-
ture.

Topology File
Hyperlink
Parser

Hyperlink
Extractor

=)
53
= 8
g 3 s
-2 =
s -
g E &)
2 & 2 3
— = =
= & - &)
§. | ETE =
g ==l
3 =
3
a2 w
= 3
= 3
~ 52
= & £
=) o o
g 2
3 5 e
Q) (=24
[#5)

Figure 1. The View of Web Crawler

2.1. Web Crawler

A WebCrawler has been designed and implemented
to retrieve documents from the world wide web and
create a database. The implementation has been done
in JAVA to effectively utilize the power of its platform
independence, secured access and powerful networking
features.

Methodology. As seen in Figure 1, WebCrawler
agent is composed of three tightly-coupled submodules,
namely Downloader, Extractor, and Parser. Initially
the downloader starts with a seed (root) URL and then
navigates Web catalog by a breadth-first expansion us-
ing the queue for URLs to be traversed. It retrieves
Web documents via hypertext transfer protocol (http)
and in the process, passes the HTML document to the
extractor. The detection of bad links are handled by
the downloader by trapping the HTTP status code re-
turned by the HTTP server of the URL to be visited.
The hyperlink extractor detects the hyperlinks in the
web documents, extracts them and passes them to the
parser for further processing. It searches for HTML
tags of the form < a href = "http : [/---7 > or
< frame src =7 ---7 > . The parser converts these
relative URLs to absolute URLs following the Internet
Standards (RFC 1738, 1808) drafted by the Network

Working Group. No parsing is necessary for absolute
URLs. The host name (more specifically, the domain
name of the network host) of each of these URLs is
then compared with the host name of the seed URL
and only those URLs whose host name match with
that of the seed URL are added to the queue. Care
should be taken so that any new URL that is added to
the queue is not a repetition of any of the URLSs that
has been already traversed or will be traversed. Thus
the WebCrawler retrieves all the web documents within
the site specified by the root URL. URLs added by the
parser to the queue are restricted to certain specific
types only.

Each of the downloaded HTML document is stored
in a file for further processing. For each seed URL spec-
ified, the program also outputs a list of the URLs tra-
versed and their topology information. The topology
information contains the list of (absolute) URLs (i.e.,
links) that are referred to in each document URL.

2.2. Retrieval Engine

Retrieval engine stands on two main legs:
descriptor-level and concept-level retrieval. For
descriptor-level document/query processing we use the
Isite/Isearch system, which is a freeware software for
text retrieval. Isite database is composed of docu-
ments indexed by Iindex and accessible by Isearch.
Isite/Isearch allows one to retrieve documents accord-
ing to several classes of queries. Isearch features give
the user many options for composing queries with
search and target elements. The simple search allows
the user to perform case insensitive search on one or
more search elements (fields). Partial matching to the
left is allowed. The Boolean search allows the user to
compose a two-term query where the two terms are re-
lated by one of the Boolean operators AND,OR, and
ANDNOT. ”Full Text” is the default search domain
unless the user selects a particular element for a term
from the term’s pull-down menu. The search elements
we experimentally found useful for electronic catalogs
are table and list structures. The advanced search form
accepts more complex Boolean queries that are formed
by nesting two-term Boolean expressions. To narrow
a search domain from ”Full Text” to a single search
element, the term is prefixed with the element name
and a forward slash. The information targeted for re-
turn by a query may be specified by choosing target
elements from a pull-down menu. Isearch is capable of
performing a weighted search that employs the inverse
document frequency of terms.

We consider concept-level retrieval a natural appli-
cation of query expansion techniques and an alterna-

tive model (to descriptor-level retrieval) in which a user
may express its needs through a query topic (or a con-
cept). Our view of a concept includes its intensional
and extensional descriptions. In other words, the user
may define a query topic in terms of either its sub-
queries or its relevant documents (or objects). A query
topic is said to be simple if it is solely based on text
references such as keyword(s) or phrase(s). We use sim-
ple topics as building blocks to introduce the notion of
composite topics. A composite topic might be either an
aggregation or generalization of simple or other com-
posite topics. We conceptualize a query topic by a set
of production rules. A production rule is simply im-
plication of a query topic (or a decision concept) by
subqueries (or conditional subconcepts) that are con-
juncted by logical ’AND’ operator. The logical 'OR’
operator is implicitly employed in evaluating alterna-
tive definitions of the same topic. In other words, the
expression on the left side of a rule is called a pat-
tern in the sense that the existence of a pattern im-
plies the applicability of a decision concept to a docu-
ment. A weight may be associated with a production
rule as an indication of the user’s preference (or con-
fidence) on the existence of the pattern within a doc-
ument. A set of rules for a query topic constitutes a
goal tree involving AND/OR arcs. Furthermore, to in-
terpret weights it is satisfactory to use the functions
minimum, maximum, and product to propagate the
weights across AND or OR arcs and implication nodes,
respectively [4]. Finally the evaluation of a goal tree
yields the extension of the query topic; that is, a set
of ranked documents is returned by the concept-level
retrieval engine in response to the selected query topic.

The concept-level module is implemented on top of
the descriptor-level retrieval. This is because a rule
base for a query topic is converted to a set of conjunc-
tive normal forms (CNFs) of explicit terms, called min-
imum term set (MTS). Each CNF in MTS is treated
as an independent query and submitted to the retrieval
system. The retrieval output consists of a set of pairs
containing the identifier and the retrieval status value
(RSV) for each document. The confidence factor of
the CNF is reflected to each document in proportion
to its rank in the retrieval output. This process con-
tinues until all CNFs in MTS are exhausted. To ac-
cumulate retrieval set of documents in an iteration we
keep a global retrieval output. Just before starting a
new iteration (to evaluate next CNF in MTS), the re-
trieval output of currently processed CNF is merged
with the global retrieval output. If duplicated docu-
ments are encountered during merging two lists, only
the one with greater RSV is picked up.

3. Experiment

We configure an experiment such that performance
of the system with respect to a predefined collection
of queries is evaluated within controlled search region
for the cases in which the effect of using only (a) table
structures, (b) table and list structures, and (c) table,
list, and paragraph structures. For each case, the size
of search region (i.e., the set of Web pages) is accumu-
latively increased with respect to the type of pages.

3.1. Method

We categorize nodes of a Web catalog into mutually
exclusive sets of referential, special, and miscellaneous
pages. Referential node is a node in which detail in-
formation for a product is specified. Special node is
a node in which a number of products sharing some
common features are grouped. Miscellaneous node is
a node which is neither referential nor special node;
that is, a miscellaneous node does not contain useful
information for our indexing purposes. To identify the
types of nodes, we use a subjective classifier based on
words in URLs as well as patterns in Web pages.

We measure the quality of retrieval output by MZ
metric [1]. Assuming at least one document is relevant
to a user query, it is defined by the formula

a

MZ(a,b =1- —
(a,b,¢) a+b+c’

where a, b and c are the number of relevant & retrieved,
nonrelevant & retrieved, and relevant & not retrieved
documents, respectively. Notice that higher quality of
retrieval corresponds to lower MZ value, which varies
between zero and one. The main steps of the experi-
ment is outlined as follows.

Step 1. Choose a Web catalog.
Step 2. Determine a set of queries.

Step 3. Let a set of structural abstrac-
tions, denoted by Sstructures be
{{table}, {table,list}, {table, list, paragraph}}

and ¢ index variable on such set. Let 7 = 0.

Step 4. Let the set of the search region, denoted by
Sregion; be {r,rUs,rUsUm}, where r,s, and m are
set, of referential, special, and miscellaneous pages.
Let j be index variable on Sregion- Let j = 0.

Step 5. Filter out the structures pointed by
Sstructures (i) from the Web pages in Syegion (j)-

Step 6. Construct the inverted-term file by using the
ILindex software.

autos | warehouse

total number of nodes 6320 10826
number of ref. nodes 1061 5078
number of special nodes 587 1006
number of misc. nodes 4672 4742
mean indegree 2.99 3.81

standard deviation of in-degree | 7.52 10.26
standard deviation of outdegree | 5.33 3.15

Table 1. Features of Web Catalogs

Step 7. Run each query and determine its MZ metric
value.

Step 8. Record the average MZ metric value for
Sstructures(i) and Sreg'ian (.7)

Step 9. Increase j by 1.
Step 10. If j < 4 then goto Step 5.
Step 11. Increase i by 1.

Step 12. If i < 4 then goto Step 4 otherwise stop.
3.2. Configuration

The preliminary tests made on two Web cata-
logs: http://autos.yahoo.com, which we call au-
tos, and http://www.warehouse.com, which we call
warehouse. In table 1, statistics (mean and spread)
of in/out degrees of nodes for these two catalogs are
shown. Note that distribution parameters were com-
puted after removing backup links?.

To identify the types of Web pages, we hard-coded
the classifier defined by some members of our research
team using URLs, in/out-degrees (not found signifi-
cant), and contents of different types of Web pages as
background knowledge. In the following, the classifier
of autos catalog is given as an example.

”ppage” or "info” € words(URL) = referential
"newcars” € words(URL) and
< make, model, type, baseprice > €
Intension(WebPage(table)) = special
otherwise = miscelleneous

Three random samples were taken from the classified
pages and found perfectly accurate. The answer of how
to automatically model such classifier is beyond the

3 A backup link is identified as follows. Let p and o stands for
mean and standard deviation of in-degrees of nodes. If a node’s
in-degree value is greater than u+2%o, then it is simply assumed
that any edge coming to that node is a backup link.

{t} | {61} | {t.Lp}
{r} 08 | 0.8 0.57
{rs} |022]022]| 034
{r,s,m} | 0.25 | 0.26 | 0.36

Table 2. Average MZ values

scope of this article. The consistency in naming di-
rectories in URLs and columns of tables allowed us to
come up with simple classifiers.

The extensive use of tables in autos catalog is re-
flected in the results shown in Table 2. In warehouse
catalog, we see that the uses of tables and lists are pre-
dominant — it may be worth noting that we only down-
loaded pages of PC, Mac, and Supplies hierarchies from
that catalog. The warehouse catalog substantially dif-
fers from autos catalog in its use of CGI queries to
pull out Web pages. It uses, for example, ”catprod-
uct.dll” for retrieving referential nodes and ”searchin-
terface.dll” for retrieving special nodes, which made
generation of classifier easier for that site.

For the experiment we have used the advanced query
interface of I_search package that allows user to define
nested Boolean queries. The set of queries (10 for each
catalog) were selected with respect to the criterion that
a query set should not favor particular structure(s).

3.3. Discussion

In Table 2, each row corresponds a particular com-
bination of referential, special, and miscellaneous Web
pages; each column shows a particular combination of
HTML structures we indexed — note that header el-
ements of HTML document were indexed by default.
Each cell in this table, shows average MZ values of
a corresponding strategy, e.g., indexing only tables in
collection of referential Web pages yields 0.8 MZ value
in average.

The results in Table 2 shows that the best perfor-
mance of retrieval engine is attained when indexing ta-
bles in referential and special pages. In Table 1 we no-
tice that 45% of total nodes in these two catalogs are
made up of referential and special nodes. Combining
this information with the best performance strategy in
the context of our preliminary work, we see that index-
ing 55% more pages would not necessarily yield better
performance. In fact the performance is degraded when
Web pages that are not directly related to products are
indexed. The effect of the trend in representing prod-
ucts by tables and lists on the performance of retrieval
engine can be observed when we compare the third col-

umn of Table 2 with preceding two. It is shown that no
added-value can be obtained by indexing paragraphs.

4. Future Directions

There are three problems with off-line retrieval en-
gines explained as follows.

1. Suppose that Web catalog is kept in back-
end database and the only way for a re-
mote user to access product information
is to interact with a front-end engine (e.g.,
http://www.{mwmicro,computerhouse}.com).
In this case the off-line agent without human
intervention attempts to index useless Web pages
which constitute a big fraction of total pages in
corresponding URL site.

2. Since the contents of Web pages (and hence, links)
change over time, local database of the off-line
agent might contain absolute indices. Given that
current version of HTML does not even support in-
corporating the version information into Web doc-
uments, the interesting question is here as to how
to manage evolution (insertion of new pages, dele-
tion of old pages, and changes to existing forms).

3. When CGI queries become only way to get product
information, there would be more than one way to
access the same Web page in given a catalog. In
this case, WebCrawler will treat those aliases as
distinct URL addresses, and in result the same
page will be indexed as many as its aliases present
in the catalog.

The first problem actually warrants incorporation of
on-line agents into the retrieval engine. Since the sec-
ond one requires mechanisms for periodic maintenance,
we plan to update Isearch package such that it is possi-
ble to make dictionary operations on the inverse-index
file. The last problem is an open question as at present
we do not know of any practical solution.

Acknowledgment

This work is supported by the Army Research Office
of USA, Grant No. DAAH04-96-1-0325, under DEP-
SCoR program of Advanced Research Projects Agency,
Department of Defense. Hayri Sever is a visiting as-
sistant professor at Department of Computer Science
& Engineering, University of Nebraska, Lincoln, NE
68588, USA.

References

[1] P. Bollmann and V. S. Cherniavsky. Measurement-
theoretical investigation of the mz-metric. In R. N.
Oddy, S. E. Robertson, C. J. van Rusbergen, and
R. W. Williams, editors, Information Retrieval Re-
search, pages 256-267. Butterworths, Boston, 1981.

[2] R. B. Doorenbos, O. Etzioni, and D. S. Weld. A
scalable comparison-shopping agent for the world-wide
web. Technical Report UW-CSE-96-01-03, Department
of Computer Science and Engineering, University of
Washington, 1996.

[3] O. Etzioni. The world-wide web: Quagmire or gold
mine? Communications of the ACM, 39(11):65-68,
Nov. 1996.

[4] B. P. McCune, R. M. Tong, J. S. Dean, and D. G.
Shapiro. RUBRIC: A system for rule-based informa-
tion retrieval. IEEE Trans. on Software Engineering,
11(9):939-944, 1985.

[6] J. R. Smith and S.-F. Chang. Visually searching the
web for content. IEEE Multimedia, pages 12-20, July
1997.

