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Abstract

Many inielligent  retrieval  approaches  have  been
studied to bridge the terminological gap existing between
the way in which users specify their information needs
and the way in which queries are expressed One of the
approgches, called Riude Based Information Retrigval by
Computer (RUBRIC), wses production rules to capture
user query concepts (or topics). A set of related
production. rules is represented as an AND/OR tree,
called a rule-based tree. One of the muin problems in this
approach is how to constract suck rules that can capture
user guery concepts. This paper provides a logical
Jramiwork. semantically essentéal 10 defining the rules for
the user _query voncepts, and PrOpOses q  way o
awomsricatly construct rule-based trees from tvpical
thesauri. - Fxperiments performed on small collections
with “a. domainspecific  thesaurus show  that  the
wntomatically consiructed sules are more effective than
harid-made vules in terms of precision,

1. Introduction

Muany intelligent retrieval systems have been studied
2, 3, 8,9, 12, 13]. However, only a few systems have
been used in the real domains. There are several reasons
why these systems are ot really being used in the world.
One of the main reasons i that some intelligent retrieval
systems ignore much of the conceptual information that
human beings have acquired by expertence, while the
other systems pay much  attention 0 representing
sonceptusl information- even though the acquisition of
thut knowledge for use by the systems s equally
challenging. One of the pioneering studies o integrate
mivrmation retrieval and artificial intelligence techmigues
is RUBRIC [12] that uses production rales to define a
higrarchy of retrieval subtopics. RUBRIC allows the
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definition of detailed queries starting at a conceptual
level.

However, RUBRIC still has some drawbacks when it
comes to real world applications. In this paper, we point
out some problems in RUBRIC and attempt to refine the
ideas of RUBRIC. One major problem is the lack of
semantics for the rules adopted in RUBRIC. The lack of
the semantics often results in confusion and may lead to
the definition of unintended rules, Another problem in
RUBRIC is about knowledge acquisition. Users would
prefer o retrieve documents of interest without having to
define rules for their queries. This implies that a lot of
predefined rules are needed. To solve these problems, we
provide a logical semantics for the rules used in RUBRIC,
and propose a way to automatically construct rules from
typical thesauri.

2. The Semantics of Rules in RUBRIC

Before defining the semantics for the rules in
RUBRIC, we need to establish a logical framework for
retrieval models. For this purpose, we investigate and
review some logical approaches {4, 15]. Based on these
approaches, we assume that terms are i-place predicates
and documents are objects in the retrieval world, For
example, consider formula computer(d). In the retrigval
world, this formula is true if the documem denoted by d is
indexed by term computer. In this section, we mainly
focus on the meaning of symbol =2 in the form of o =
for representing rules in RUBRIC.

2.1. Material Implication for Representing Rules

We, first, consider an example of rule used in
RUBRIC as follows: baseball-championship = event.
This rule says that baseball championship is an event.
One possible interpretation for symbol = is the material
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implication of the Boolean logic > having the property: o
o -av Bl

For theoretical completeness, we use the material
implication to represent the rules, although it is not
suitable to the retrieval domain'. Using the material
implication, we can represent it as

Vx baseball-championship(x) o event(x).

Intuitively, this formula says that if a document is indexed
by term baseball-championship, then it can be indexed by
term event. For the notational convenience, we will
simply represent the above formula as

basebali-championship  event

RUBRIC allows us to represent degrees of certainty
about rules with a real number in the interval [0, 1]. For
example, consider the following rule used in RUBRIC.

baseball & championship —=>
baseball-championship {0.9)

In order to represent the rule using the material
implication, we need to extend the classical logic with
degrees of certainty. In this paper, we only give the
definitions for the logical connectives NOT (—), AND
(A), and OR (v), as follows.? In the below, ¢ and s are
propositions, and w, §, and y are degrees of certainty.

~t (@ iff t(y), wherew=1-y
tns(w) if £(€)and s (y), where o = Min(&,y)
tvs{(w) if t(E)ors(y), where o =Max(E,y)

Now, using the material implication we can represent the
above rule as follows.

(baseball A championship) o
baseball-championship (0.9)

In RUBRIC, multiple rules are allowed about the
same topic. For example,

baseball-championship = event
murder-event = event

In this case, RUBRIC uses each rule as an equally valid
alternative definition. This means that there is an implicit
OR. Using our notation, we can represent it as follows.

(1) (baseball-championship v murder-event) > event

We can also derive formula (1) from the above two rules
as follows. Since the existence of two facts in a
knowledge base means the conjunction of the two facts,

' We will introduce a relevant implication later.
? For the full version of non-classical logic, see [15].

we can represent the two rules as in formula (2). Actually
formula (1) and formula (2) are logically equivalent.

(2) (baseball-championship o event) A
(murder-event - event)

With the degrees of certainty, let us reconsider the
above two rules as follows.

baseball-championship = event (0.9)
murder-event = event (0.8)

Using our notation, we can represent these rules in
formula (3). By the definition of logical connectives, we
can also get formula (4) from (3). The degree of certainty
of this formula is 0.8 that is the minimum of 0.8 and 0.9.
However, formula (4) loses the degrees of certainty for
the original rules. In this sense, formula (3) is a better
interpretation than formula (4).

(3) (baseball-championship 2 event) (0.9) A
(murder-event o event) (0.8)

(4) ((baseball-championship v murder-event)
oevent) (0.8)

In fact, the semantics of rules used in RUBRIC is not
clearly mentioned in the original work [12]. Let us
consider the following example that was given in [12]

(5) team | event = World-Series

One possible interpretation of this rule is formula (6). By
the logical equivalence, we can also represent it as
formula (7).

(6) (team v event) > World-Series
(7) (team > World-Series) A (event > World-Series)

With the degrees of certainty, let us réconsider rule (5),
for example as in rule (8). We note that a rule like rule (8)
was actually used in some previous works [1]. One
possible interpretation for it is formula (9), as mentioned
before.

(8) team (0.8)] event (0.7) = World-Series
(%) (team > World-Series) (0.8) A
(event > World-Series) (0.7)

Someone might consider another interpretation as in
formula (10) for rule (8).

(10) (team (0.8) v event (0.7)) > World-Series

It is. theoretically permissible to consider the
interpretation for formula (8). However, it is unusual to
assign a specific degree of certainty to the left-hand side
of arule, instead of assigning it to the rule as a whole.



2.2. Relevant Implication for Representing Rules

In the previous section, we use the material
implication for representing rules used in RUBRIC.
However, the material implication shows some irrelevant
properties. One of the properties is that false implies
anything [10]. More practically, it is also difficult to get
the reasonable degrees of certainty during the inference
processing. For example, consider formula (I11) and
proposition PENTIUM with degree of certainty 0.6. By
the definition of the material implication, we can convert
formula (11) to formula (12). Since the degree of
certainty for proposition PENTIUM is 0.6, the degree of
certainty for proposition processor, denoted by cp, can be
computed as in Max(1-0.6, c¢p) = 0.8. That is, ¢p = 0.8,
Intuitively, the result is not plausible. It should be less
than or equal to 0.6.

(11) PENTIUM o processor (0.8)
(12) —PENTIUM v processor (0.8)

Although the material implication is theoretically
complete, we need a more practical notion of implication.
We introduce a new implication, denoted by —», that can
be used to represent rules. The implication —» is
assertional rather than logically definable. This implies
that even if o = B does not hold, someone can assert o —
{3. The following is the syntax for defining rules.

<rule>;=
certainty>]
<pattern> ::= <literals> |

- <pattern> <and-or-operator> <pattern>
<concept> = <term->
<literals> = <term> | - <term>
<degree-of-certainty> = (<real value between 0 and 1>)
<and-or-operator> = A v

<pattern> —  <concept> [<degree-of-

A degree of certainty can be assigned to a rule, but one is
not allowed to assign a degree of certainty to a component
of ‘a rule. If the degree of certainty is omitted, 1 is
assumed.

For plausible - inference - processing, we provide a
semantic constraint, given'in Axiom 1. This axiom can be
used as a generalized modus ponéns inference rule.

Axiom 1. (Generalized Monus Ponens)
If -5 (&) and £ (y) then s (@), where 0= *y

For example, consider rule (13). Suppose mammal is
believed with degree of certainty 0.9 and thing-to-have-a-
trunk is believed with degree of certainty with 0.8. Then
proposition elephant has degree of certainty 0.72 =
Min(0.9, 0.8)*0.9.

(13) mammal A thing-to-have-a-trunk — elephant (0.9)

We consider the problem of multiple rules, again.
Suppose that we have another definition for concept
elephant, as in rule (14), and that mammal, thing-to-have-
a-trunk, and thing-to-have-a-long-nose are believed with
degrees of certainty 0.9, 0.8, and 0.7, respectively. Then,
from rule (13) we can get proposition elephant with 0.72,
and from rule (14) we can derive proposition elephant
with 0.56 = min(0.9, 0.7)*0.8. What is the degree of
certainty for proposition elephant? Since people prefer
more certain knowledge, we would better choose 0.72 as
the degree. This is a kind of maximum operation.

(14) mammal A thing-to-have-a-long-nose
— elephant (0.8)

3. Defining Rules from Thesauri

In previous sections, we propose the semantics of rules
that describe what we want to retrieve at a conceptual
level. However, for developing conceptual retrieval
systems in practice, it is not sufficient to provide the
semantics for defining concepts. If users should define the
rules whenever they want to retrieve some documents, it
would be too tedious to use the retrieval systems. To
address this problem, we are attempting to utilize the
knowledge in thesauri.

Before extracting knowledge from thesauri, we
distinguish between different types of rules that are used
in defining concepts, and extract the knowledge
according to the types. Suppose that a rule has a form of
o —» B with degree of certainty . Then, we can consider
at least three types of rules as follows.

Type 1 (Specific Concept): If (o o B) A (. < B (w)),
then a — P (w)

Type 2 (General Concept): If (o < B) A (a0 2 B (0)),
then ot —> B (@)

Type 3 (Possible Concept): If (o o B (@) v (o < B (@),
then o — B (w)

If o — B () is type 1, o is more specific than concept f.
For example, consider rule (15).

(15).elephant v dog v horse — mammal (0.7)

Suppose that some people believe that mammals mainly
consist of elephants, dogs, and horses. Since proposition
elephant v dog v horse > mammal is true, if they accept
proposition elephant v dog v horse < mammal with
degree of certainty 0.7 then they can make rule (15).

If o —» B (w) is type 2, « is more general than concept
B. For example, consider rule (16). Since people usually
believe that elephants have a trunk, it can be a reasonable




conjecture that a mammal to have a trunk is an elephant.

(16) mammal A thing-to-have-a-trunk — elephant (0.7).

If a rule is neither type 1 nor type 2, we might say that
o is possibly related to concept B. We call this kind of
rule type 3. For example, consider rule (17). There is no
subsumption relation between concepts Scientist and
Science. But there are some relations between the two
concepts.

(17) Scientist — Science (0.4)

Now, let us look into the structure of a typical
thesaurus. A typical thesaurus usually has the following
fields: BT(Broad Term), NT(Narrow Term), RT(Related
Term), and USE. Field USE represents the terms to be
used instead of the given term with the almost same
meaning. For a given term, a thesaurus could have a list
of terms for each field. Consider a part of content in “fire
ecology” thesaurus [16] for term “Habitat types” and term
“Coastal plain.”

Descriptor: Habitat types

USE: Plant associations, Vegetation types

NT: Balds, Barrier islands, Bogs,
Bottomland hardwoods, Coastal plain,....

RT: Community ecology, Forest types

Descriptor: Coastal plain
BT: Habitat types

From NT fields in the above example, we can construct
type 1 rules as follows, although we do not yet worry
about assigning a degree of certainty to each rule.

Balds — Habitat type; Barrier islands — Habitat types;
Bottomland hardwoods — Habitat types;
Coastal plain — Habitat types; ...

More generally, we can construct type 1 rules using a
disjunction of NT terms, for example Balds \ Barrier
islands — Habitat types. We can further extend construct
type 1 rules with a conjunction of RT terms. For example,
Balds v Barrier islands A Community ecology — Habitat

types.
Using a conjunction of BT terms, we can construct type

2 rules, for exampie Habitat types — Coastal plain, since
Habitat types < Coastal plain. Using a conjunction with
some RT terms, we can extend type 2 rules if the RT

terms subsume the given term in a conceptual sense.
However, since it is almost impossible to automatically
detect whether RT terms subsume other terms in a typical
thesaurus, we rather use syntactic rules, called AND rules,
that consist of conjunctions of BT terms and RT terms
without considering the subsumption relationship.

For type 3 rules, we adopt another category of syntactic
rules, OR rules, that consist of disjunctions of NT terms
and RT terms. Although USE terms can be used for
constructing type 3 rules, they are used implicitly, rather
than explicitly, in our retrieval system.

In summary, using the fields of a thesaurus NT, BT,
and RT, we propose to construct conceptual rules for a
given term as follows. The degrees of certainty associated
with the rules below can be experimentally decided.

Type 1 Rules: <disjunction-of-some-NT-terms>
~» <given-term> (®,)
<disjunction-of-some-NT-term> A
<conjunction-of-some-RT-terms>
— <given-term> (®,)

Type 2 Rules (AND Rules):
<conjunction-of-some-BT-term> —» <given-term> ()
<conjunction-of-some-BT-term> A

<conjunction-of-some-RT-terms>
— <given-term> {(®,)

Type 3 Rules (OR Rules):

<disjunction-of-some-NT-term> v
<disjunction-of-some-RT-terms>
— <given-term> (ws)

4. Spreading Activation for Choosing Most
Interesting Terms

When the system defines concepts-in a form of Type 1,
Type 2, or Type 3, it uses terms-in NT field, BT field, and
RT field. Since these fields usually have a lot of terms,
the system has to select some of them in order to define
the concepts that users. really want. For this purpose, we
are attempting to select only the terms that user is likely
to be interested in. We assume that the terms used in
concepts previously defined for a user are interesting to
the user. We call such a set of the interesting terms the
user’s view. When the system defines Type 1 and Type 3
(or Type 2) rules in terms of NT (or BT) terms and RT
terms, it will only use the NT terms (or BT terms) and RT
terms that are related with some terms in the view. For
this purpose, we consider a function, find(z, ¥), such that
if there exists a path from term tto a term (v) in view V, it
returns a positive numerical weight, w = degree-of-
closeness(t, v). Otherwise it returns 0. We compute the
degree of closeness using the spreading activation



technique in thesauri {3, 6, 7, 14]. Figure 1 shows how the
spreading  acfivation works. To do the spreading
activation, we can consider the thesaurus as a graph,
where each term is a node and each relation is a link.
Given a term (node), we want to know whether the node
reaches to some node in the view through the spreading
activation.

Since the size of the set of terms to be explored in the

spreading activation increases exponentially, we will use
three kinds of constraints on spreading activation [3]. The
first one is a distance constraint. It says that the activation
should cease at a distance of some number of links from
the starting node. The second one, called fan-our
constraint, s that whenever we reach the degree of
closeness below some threshold, we stop the spreading

Spreading Activation
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Figure 1. Spreading Activation for deciding whether the terms in
each field (BT, NT, and RT) are related with a view

activation, The last one, called path endorsement, says
that only some of the refations are allowed to be used for
the spreading activation. For example, we may aliow (o
use, NT and RT, but not BT for Type | and Type 3 rules.

In- order to associate the constraints with the function
Jindt, ¥), we add parameters w and d to keep track of the
degree of certainty and the depth 6f spreading activation
level, respectively, Since there are possibly multiple paths
from node t and a node in view V, we have to find the
path with the highest degree of certainty, We construct
function find(t, V, w, d) us follows. Tn the function, BT,
NT(L), and RTQ) are a set of BT terms, 4 set of NT terms,
and a set of RT terms for term t, respectively. Depending
on the path endorsement, we can exclude some terms
from s, Although this function employs a kind of depth-
first search, in order to efficiently compute the function
one could devise some kind of heuristic function.
However, we leave this problem open.

ifmd(t, V, w, d)

if tis in V then return {(w);
/* Path endorsement can be applied. */

$= NT() W RTW) BT ;
wmax = (;
forxins {
w = w ¥ weight-value-of(t, x);
if distance and fan-out constraints are satisfied
wmax = max(wmax, find(x, v, w, d+1));
H

return (wmax),

}

5. Experimental Test and Evaluation

In order to test our model, we choose a fire ecology
thesaurus. and  database [16]. We let an expert on
“ecology” create rules for thirty concepts that the expert is
interested m. Using these rules, we construct the expert’s
view that consists of all the terms used in the rules. After
that, the expert gives ten new concept names, for which
the systemi as weil as the expert construct the rules
independently. Using the both kinds of rules, we retrieve
documents. Actually, the expert creates five OR rules and
five AND rules for the given ten concepts.




5.1. OR rules

We, first, consider the OR rules. The five OR rules are
as follows.

Expert’s OR rules
(1) leaves | mast | duff => litter
(2) fragmentation | forest edges => ecotones

=> bogs

(4) marshlands | fens | bogs | marshes | swamps
=> wetlands

(5) dust | ash | soot => particulate

The right hand sides of the above rules are the given
concept names. The left hand sides of the rules are
constructed by the expert. Using the left hand sides, we

(3) carnivorous plants | organic soils | humus

Table 1. The result for the OR rules made by the expert

concept No. of No. of Relevant | No. of Possibly No. of Precision
Retrieved Documents Relevant irrelevant
Documents Documents Documents
(1) 507 146 56 305 0.40
(2) 134 26 24 84 0.37
(3) 273 26 16 231 0.15
(4) 580 200 89 301 0.49
{5) 349 67 40 242 0.31
Average 0.34
Table 2. The result for the generated rules based on Type 3 rule
concept No. of No. of Relevant No. of Possibly No. of Precision
Retrieved Documents Relevant lrrelevant
Documents Documents Documents
(1) 394 156 60 178 0.55
(2) 192 36 37 119 0.38
(3) 102 53 21 28 0.73
(4) 249 46 34 169 0.32
(5) 14 6 4 4 0.71
Average 0.54
Table 3. The result for the generated rules based on Type 1 rule
concept No. of No. of Retevant No. of Possibly No. of Precision
Retrieved Documents Relevant irrelevant
Documents Documents Documents
(1) 3 2 0 1 0.67
2) 192 36 37 119 0.38
(3) 6 2 2 2 0.67
(4) 2 0 1 1 0.50
(5) 7 3 2 2 0.71
Average 0.59

retrieve documents, For the retrieved documents, the
expert decides whether they are relevant, possibly
relevant, or irrelevant. Table 1 shows the result. The
precision . is computed as (the number of relevant
documents + the number of possibly relevant documents)
/ the number of. retrieved documents. Recall is not

considered because of the size of the database.

For the above five concepts, our system automatically
generates rules, by using the function find, in the
following two ways. The first way is to use Type 3 rule
(OR rile). Using Type 3 rule, our system generates the
rules are as in the below. To generate the rules, we use the



following parameters: the weighting value for the relation
NT is 0.8, for BT 0.7, for RT 0.6; the maximum depth
level of activation is 6; and the threshold for the
activation weighting value is 0.2. To construct the left
hand sides of the rules, the system choose the first three
terms® having the highest weighting values computed
from the spreading activation. The precision rates are
shown in Table 2. The average precision is higher than
that in Table 1.

System’s Type 3 rules(OR rules)
(1) humus | fuel types => litter
(2) forest fragmentation => ecotones
(3) marshlands => bogs
(4) riparian habitats | bogs => wetlands
(5) dust| soot => particulate

The second way for generating the rules is to use Type
1 rule. The generated rules are shown in the below, and
the resulting precision rates are shown in Table 3. We use
the same parameters as we used for the first way.
Although the result of using Type 1 rule is different from
the result of using the expert’s OR rules in the amount of
retrieved ‘documents, the resulting precision rates are
much better than those in Table 1.

System’s Type 1 rules

(1) humus & fuel types & fine fuels => litter

(2) forest fragmentation => ecotones

(3) savannas & marshlands => bogs

(4) riparian habitats & bogs & grasslands
=>" wetlands

(5) dust | soot & air quality => particulate

5.2. AND rules

We consider the expert’s AND rules. For the AND
rules, actually two experts (expert A and expert B) are
involved. They construct two five rules independently.
First, let us see the expert A’s five AND rules in the
below. The resulting precision rates are shown in Table 4.

Expert A’s AND rules
(1) water fowl & hunting => wildlife management
(2) mast & seeds => fruits
(3) marshlands & swamps => riparian habitats

* From the predefined rules, we can statistically find that
the expert uses three terms for constructing the rules, and
we eliminate the terms having more than 350 retrieved
documents since the database allows to display up to 350
documents.

(4) smoke & fire control => smoke management
(5) forest fragmentation & site treatments
=> firebreaks

For the above five concepts, our system generates rules as
follows, and the result is shown in Table 5. The average
precision rate is much better than that in Table 4. Even if
we ignore concepts (3) and (4) because of the small
number of retrieved documents, our precision rates are
better.

System’s Type 2 Rules for Expert A’s AND Rules

(1) birds & wildlife & wildlife food habits
=> wildlife management
(2) mast & seeds => fruits
(3) habitat types & streams &
wildlife habitat management => riparian habitats
(4) smoke & air quality & convection
=> smoke management
(5) fire control & fuel breaks => firebreaks

Now, let us consider the expert B's five AND rules
shown as follows. The resulting precision rates are given
in Table 6.

Expert B’s AND rules

(1) fuels & weather & flame length
=> fire behavior
(2) temperature & flame length => fire intensity
(3) urban wildland fire interface &
rural communities => fire prevention
(4) wetlands & bottomland hardwoods
=> fire frequency
(5) logging & fragmentation => wildfires

For the above concepts, our system generates the rules as
follows, and the result is shown in Table 7. Our precision
rates are better than those in Table 6, even if we ignore
concept (5) in Table 7 because of the small number of
retrieved documents.

System’s Type 2 Ruies for Expert B’s AND Rules

(1) fire weather & fire case histories &
fire intensity => fire behavior
(2) fire regimes & catastrophic fires &
crown fires => fire intensity
(3)_fire control & fire hazard reduction &
public information => fire prevention
(4) burning intervals & fire exclusion &
fire history => fire frequency




(5) prescribed fires & disturbance &
grass fires => wildfires

6. Conclusions

In this paper, we clarify the semantics for the rules
used in RUBRIC that can be used to describe queries as a
conceptual level, and propose a way to construct concepts
from thesauri based on the semantics. The generated rules
are more effective than hand-made rules in terms of
precision. However, in order to generate rules, we used

the prefixed weighting values for the relationships NT
(Narrow Term), BT (Broad Term), and RT (Related
Term), since thesauri usually do not provide degrees of
relatedness (or closeness) between terms. Therefore,
whenever we use a different thesaurus, we need to adjust
the weighting values for the relationships. In the future,
we need to do more experimental tests on various thesauri
and to propose better ways to generate user’s view that
can reflect user’s interest.

Table 4. The result for the AND rules made by expert A

concept No. of No. of Relevant No. of Possibly No. of Precision
Retrieved Documents Relevant trrelevant
Documents Documents Documents
(1) 13 5 3 5 0.62
(2) 12 7 3 2 0.83
(3) 23 5 5 13 0.43
(4) 34 9 10 15 0.56
(5) 22 7 4 11 0.50
Average 0.59
Table 5. The result for the generated rules based on Type 2 rule (Expert A)
concept No. of No. of Relevant No. of Possibly No. of Precision
Retrieved Documents Relevant Irrelevant
Documents Documents Documents
{1) 36 19 10 7 0.81
(2) 12 7 3 2 0.83
(3) 3 2 1 0 1.00
(4) 2 1 1 0 1.00
(5) 17 6 8 3 0.82
Average 0.89
Table 6. The result for the AND rules made by expert B
concept No. of No. of Relevant No. of Possibly No. of Precision
Retrieved Documents Relevant lrrelevant
Documents Documents Documents
(1) 12 4 3 5 0.58
(2) 15 3 6 6 0.60
(3) 32 17 6 9 0.72
4 28 3 10 15 0.46
(5) 11 0 7 4 0.64
Average 0.60
Table 7. The result for the generated rules based on Type 2 rule (Expert B)
concept No. of No. of Relevant No. of Possibly No. of Precision
Retrieved Documents Relevant Irrelevant
Documents Documents Documents




{1 26 17 7 2 0.92
73} 30 1 18 11 0.63
3) 12 8 4 0 1.00
(4) 28 9 11 8 0.71
(5) 2 0 2 0 1.00
Average 0.85
Acknowledgements

We would like to thank two domain experts, Judy Buys
and Dr. Susan Grace in National Wetlands Resource
Center at Lafayette Louisiana, for constructing the rules
and deciding the relevancy on the retrieved documents.

References

[1] Alsaffar, A. H., Deogun, J. S., Raghavan, V, V., and Sever,
H. “Concept-based retrieval with minimal term sets”, In Z, W.
Ras and A. Skowon, editors, Foundations of Intelligent
Systems: Eleventh Int’l Symposium, ISMIS’99 proceedings, pp.
114-122, Springer, Warsaw, Poland, Jun, 1999.

{2] Belew, R. W. “Adaptive information retrieval: Using a
connectionist representation to retricve and learn about
documents”, In 12th International Conference on Research and
Ddevelopment in Information Retrieval (1989), ACM SIGIR,
Association for Computing Machinery, pp. 11-20.

3] Bollacker, K. D. Lawrence, 8., and Giles, C. L. “CiteSeer:
an autonomous  web “agent for  automatic retrieval and
identification of interesting publications”, In Proceedings of the
Second  International Conference on Autonomous Agents,
{(Minneapolis, St. Paul, May 9-13, 1998), ACM New York, 116-
123,

[4] Chiaramella, Y. and. Chevallet, J. P. “About Retrieval
Models and Logic”, The Computer Journal, Vol. 35, No. 3, pp.
233-242, :

{5} Cohen, P. and Kjeldsen,” R. “Information retricval by
constrained spreading activation  on = semantic networks”,
Information -Processing and Management 23, 4 (19873, 225-
268.

(6] Collins, A. M., and Loftus, E. F. A spreading activaiion
theory of semantic processing. Psychological Review 82 (1975),
407-428.

{7] Crestani, F. “Application of spreading activation techniques
in information retrieval”, Artificial Intelligence Review 11, 6
(1997), 453-428.

{81 Croft, W. B. “Approaches to intelligent' information
retrieval”, Information Processing and Management, 1987, Vol,
23, No. 4, pp. 249-254.

91 Croft, W. B, Lucia, T. I, Cringean, J., and Willett, P.
“Retrieving documents by plausible inference: An Experimental
Study”, Information Processing and Management, 1989, Vol
25, No. 6, pp. 599-614.

[10]Genesereth, M. and Nilsson, N. “Logical Foundation for
Artificial Intelligence”, San Francisco: Morgan Kaufmann,
1987.

[11} Kleene, S. C. Mathematical Logic. John Wiely & Sons,
1967.

[12] McCune, B. P, Tong, R. M., Dean, J. S., and Shapiro, D.
G. “RUBRIC: A System for Rule-Based Information Retrieval”,
[EEE Transaction on Software Engineering, Vol. SE-11, No. 9,
September 1985,

[13] Resnik, P, “Using information content to evaluate semantic
similarity in a taxonomy”, In Proceedings of the 14th
International Joint Conference on Artificial Intelligence, pp.
448-453, 1995.

[14] Satton, G. and Buckiey, C. “On the use of spreading
activation methods in automatic information retrieval”, In 11th
Annual International ACM SIGIR Conference on Research and
Development in Retrieval (1988), ACM SIGIR, Association for
Computing Machinery, pp. 147-160.

[15] Van Rijsbergen, C.J. “A non-classical logic for
information retrieval”, The Computer Journal, 29, pp. 481-485,
1986.

[16] “Fire Ecology” thesaurus and data base
(http:/fwww.talltimbers.org/feco.html)




